
Developers’ Contribution to Structural

Complexity in Free Software projects

Antonio Terceiro

Computer Science Department
Federal University of Bahia
terceiro@dcc.ufba.br

Abstract. Free software projects are developed in a way that is sub-
stantially different from “conventional” software development. As they
get more importance in the Information and Communication Technol-
ogy ecosystem, understanding the processes by which these projects
are developed, evolved and maintained gets more important as well.
Structural Complexity, the complexity inherent to the organization of
source code elements into modules, represents a major threat to any
software project: highly complex software needs higher levels of effort
for maintenance activities and exhibit a higher amount of more bugs.
Free software projects with highly complex source code are also less
likely to attract new developers. This PhD research aims at explain-
ing variations in the Structural Complexity of free software projects in
terms of the characteristics of the developers producing it. This paper
describes the research by presenting its objectives, proposed research
design, and preliminary findings.

Key words: Free Software, Open Source Software, Structural Com-
plexity, Core and Periphery, Developer Evolution

1 Introduction

The Structural Complexity of a software system is the complexity exhibited
by the organization of its modules. It involves both the internal organization
of each module, and the relationships between the different modules. Higher
Structural Complexity is known to impact negatively programmer productivity
in maintenance activities, consequently making it more difficult to fix bugs and
add new features. Free software projects1, in special those that count only with
volunteer developers, are less likely to get new contributions because of that.

The Structural Complexity of a free software project is built one step at
a time: the design decisions that shape the code base, making it more or less
complex over time, are made by its developers as part of their daily development
activities.
1 In the context of this paper, “Free Software” is used as a synonym for “Open Source
Software” (OSS), ‘Free/Open Source Software” (FOSS) and “Free/Libre/Open
Source Software”(FLOSS).



2 Antonio Terceiro

This research aims at investigating the factors that influence the increase of
Structural Complexity in free software projects. Our hypothesis is that varia-
tions in Structural Complexity can be explained by characteristics of the devel-
opers, including their level of participation, experience in the project, experience
in specific parts of the project, and the extent to which they are specialised in
specifics parts of the project.

The remainder of the paper describes the research, its theoretical basis,
goals and current state, and is organized as follows: section 2 presents the
theoretical background; section 3 describes the motivation for the research;
section 4 presents the research questions; section 5 is about the research design;
sections 6 discussed preliminary results, and section 7 finishes the paper by
drawing the conclusions.

2 Background

This section presents the theoretical background to the research, by exploring
two important topics:

– The concept of Structural Complexity, its effects on effort needed for software
maintenance activities, and studies relating it to other aspects of software
projects.

– Different aspects of developers’ participation in free software projects. We
believe that these aspects can explain, at least in part, the variation of Struc-
tural Complexity in free software projects. In this paper two different aspects
of developer participation are discussed: the core/periphery dichotomy and
the developers’ evolution.

2.1 Structural Complexity

Structural complexity is an architectural concern: it involves both the inter-
nal organization of software modules, as well as how these modules relate to
each other [6, 3]. Structural Complexity influences the developer’s time: a more
complex software is expected to require more effort from developers to be com-
prehended in maintenance activities [10].

Several aspects of Software Design can be considered when evaluating Struc-
tural Complexity. We can consider, among others, coupling [5, 11], cohesion
[5], and inheritance [5, 11]. While inheritance is specific to the object-oriented
paradigm, coupling and cohesion are more generally applicable. Every program-
ming paradigm has a notion of module, whether it is called “module”, “class”,
“aspect”, “abstract data type”, “source file”, etc. Having modules, one can al-
ways analyse a program and identify which other modules a module refers to
and thus have a notion of coupling, and also verify how the subparts of a given
module interact with each other to evaluate the cohesion of such a module.



Developers’s Contribution to Structural Complexity 3

In an experimental setting with professional software developers, Darcy et
al found that more complex software requires more effort for maintenance ac-
tivities [10]. Moreover, they verified that neither coupling nor lack of cohesion
by themselves could explain the decrease in comprehension performance of the
developers; only when considered together (by multiplying the two) they pre-
sented an association with higher maintenance effort. The authors claim that
when considering Structural Complexity, one must consider coupling and cohe-
sion together.

Midha [16] studied projects from sourceforge.net and verified that increases
in complexity leads to increase in the number of bugs in the source code, de-
crease in contributions from new developers and increase in the time taken to
fix bugs. Although using a different concept of Structural Complexity by consid-
ering MacCabe’s Cyclomatic Complexity and Halstead’s Effort2, these results
demonstrate that complexity has nasty effects on Free Software projects. We
speculate that an increase in Structural Complexity as studied here has similar
effects (although we cannot claim that effectively yet).

Increasing complexity, thus, brings all kinds of trouble to Free Software
projects. Stewart et al studied 59 projects written in Java that were available
on Sourceforge [22], using the product of coupling and lack of cohesion as their
Structural Complexity measure. They verified 4 different patterns of Structural
Complexity evolution, of which 2 presented growing trend in the end of the
period. The other 2 presented stabilization in the end of the period: none of the
identified patterns featured a complexity reduction trend. A previous study of
ours also indicated a growing trend in Structural Complexity on another (but
smaller) project written in C [23].

Increasing complexity trends are not an exclusive feature of free software
projects, though: the seminal work of Lehman on software evolution already
identified it, and that led to the formulation of the second law of software
evolution the Law of Increasing Complexity [14]. That law, formulated in the
context of studies on proprietary software systems, states that as systems evolve,
their complexity increases unless work is done to maintain or reduce it.

For now, we know that i) software complexity is associated with undesirable
effects (more maintenance effort, more bugs, less attraction of new developers)
and ii) Structural Complexity tends to not decrease, and in a reasonably large
amount of cases, it tends to grow. That leads us to the following question: why
does Structural Complexity increase in the context of Free Software projects?

Having a more open governance structure seems to be related to better
design quality. [4] From one side, a higher design quality enables a more open
governance: less coupled modules allow different developers to work on their
own parts of the project without explicit coordination activities. Having a more

2 These two measures represent respectively the internal complexity of subroutines
and the overall vocabulary size of the code base. They reflect, thus, a different
aspect of Structural Complexity. Here we are looking at Structural Complexity
at the design/architecture field, considering the relationship between modules and
between the sub-parts of each module.



4 Antonio Terceiro

open governance gives developers more freedom to enhance the design quality
instead of having to keep up with deadlines or another types of pressures from
higher management or customers [4].

Another possible reason for a worse software design quality is probably bad
news for most project leaders. Project success3 may be associated with a lower
design quality. When a project reaches a leading position, it may be that the
lead developers start to focus on lateral activities rather than on programming,
such as answering users in forums or mailing lists, reviewing contributions etc
[1].

2.2 Developer’s participation in free software projects

The core/periphery dichotomy. Normally, a Free Software project is
started by a single developer, or by a group of developers, in need of addressing
a particular need. After there is a usable version, it is released to the public
under a Free Software license which allows anyone to use, change and distribute
a copy of that software. As new users get interested in the project, some of them
may start to contribute to it in several possible ways: with code for new features
or bug fixes, with translations into their native languages, with documentation,
or with other types of contribution. At some point, then, the project has a vivid
and active community: a group of people that gravitate around a project, with
varied levels of involvement and contribution.

The “onion model” [8, 17] became a widely accepted representation of what
happens in a Free Software project, by indicating the existence of concentric
levels of contribution: a small group of core developers do the largest part of
the work; a larger group makes direct, but less frequent contributions in the
form of bug fixes, patches, documentation, etc; an even larger group reports
problems as they use the software, and the largest group is formed by the silent
users who only use the software but never provide any type of feedback.

The processes by which participants migrate from one group to another
are very different from one community to the other: communities may adopt
more formal and explicit procedures for that, or use a more relaxed approach
and let things flow “naturally”. But in general the achievement of central roles
(and thus more responsibility, respect and decision power) are merit-based: a
developer becomes a leader by means of continuous valuable contributions to
the community [13].

Since most of the work is done by a core team, it is important for projects
to keep a healthy and active core team. Some projects are able to keep its core
team with few or no changes across its entire history, while others experience a
succession of different generations of core developers [19, 18].

The relationship between core contributors and peripheral (non-core) mem-
bers of a community are not always smooth: sometimes the core tends to work

3 measured as a function of the number of downloads, web traffic and development
activity



Developers’s Contribution to Structural Complexity 5

on their own demands and to give little attention or even to ignore completely
the demands of the periphery [9, 15]. From an individual point of view, core
and periphery members also exhibit different behaviour while debating subjects
related to the project [21] or in the bug reporting activity [15].

Developer Evolution. There is a large number of studies on the evolution of
Free Software projects. Most of them are concerned with the evolution in the
projects’ internal attributes, such as size and to some extent software architec-
ture.

In order to understand software evolution of Free Software projects, how-
ever, one needs to understand the evolution of their communities [20]. This
understanding must comprehend not only the growth of communities [25], but
needs to take the evolution of individual developers into account as well.

By analysing developer’s activity in a Free Software project, we can identify
several processes they go through in the course of their evolution: [7]

– Some developers remain working in the same set of modules and are special-
ists, while others, generalists, achieve a broader experience in the project and
change a growing number of modules.

– Developers achieve different centrality measures in the project when consid-
ering the modules they change: some happen to change the project’s more
central — and important — modules, while others change only non-central
modules.

– Developers shift from the periphery to the core of the project, or vice-versa.

Understanding the process of developer evolution in Free Software projects
is an important step towards understanding the projects’s own evolution.

3 Motivation for the Research

From times to times, we hear stories about free software projects being rewritten
from scratch. Just to cite recent examples, both eog, GNOME’s image viewer
and gnome-session, GNOME’s session management software, got completely
rewritten into new versions4. In these projects, the code base became so difficult
to maintain that the active developer(s) decided that rewriting them was worth,
given the high amount of effort required to keep maintaining them in their
current state. Better, less complex code would make maintenance easier by
requiring less effort to add new features and fix bugs in a way that does not
make future maintenance harder.

When such a rewriting effort is made, precious developer effort is spent in
a complete redesign of the software, instead of on implementing new features

4 These rewrites were described in their wiki pages, respectively http:
//live.gnome.org/EyeOfGnome/EogNg and http://live.gnome.org/
SessionManagement/NewGnomeSession.



6 Antonio Terceiro

and fixing bugs; every project leader would prefer not having to do it. If we can
identify which factors contribute to added complexity in free software projects
we’ll be able to avoid having projects reaching the point in which its developers
start to consider a complete rewrite.

As seen in section 2.1, there is a theoretical construct that characterises the
problem: Structural Complexity. Software with high Structural Complexity is
harder to maintain and evolve, has more bugs, and is less likely to attract new
contributors.

Although we know what consequences higher levels of Structural Complexity
can have in projects, we have little knowledge about its causes. If we understand
the factors that affect the increase (or decrease) in Structural Complexity in
free software projects, project leaders will be able to deploy methods and tech-
niques to mitigate these factors and thus avoid having an unacceptable level
of complexity in their source code. This will make it easier for the project to
attract contributors as well as avoiding the need for a complete rewrite.

In this research we explore developer characteristics as factors that may
influence the variation of Structural Complexity in free software projects.

4 Research Questions

The general goal of the research is to build a model of how developers influence
the evolution of Structural Complexity in Free Software projects. This includes
identifying factors related to characteristics of the developers that influence
Structural Complexity, as well as reporting the conditions under which such in-
fluence is observed. Our hypothesis is that the Structural Complexity variation
in a Free Software project can be explained by characteristics of the developers
that change its source code.

Specifically, we are working on the following research questions :

1. Does the developers’ level of participation affect Structural Complexity?
This involves verifying whether core and peripheral developers introduce
different amounts of Structural Complexity in the source code.

2. Does individual developers’ experience in the project affect Structural Com-
plexity? This involves investigating whether the amount of Structural Com-
plexity added by a developer changes as he/she evolves in the project.

3. Does individual developers’ experience in specific parts of the project affect
Structural Complexity? We will investigate whether developers introduce
different amounts of Structural Complexity when changing modules they
are used to in comparison with when they change modules they are not so
used to.

4. Does specialisation and generalism affect Structural Complexity? Do spe-
cialist developers introduce different amounts of Structural Complexity with
their changes in comparison with generalist developers?



Developers’s Contribution to Structural Complexity 7

Providing answers to these questions will provide original contribution to
the body of knowledge about the Free Software development phenomenon, and
to some extent to the wider Software Engineering community as well.

5 Research Design

The overall research definition, using a GQM template [2], is as follows: in this
research we analyse changes made to the source code of free software projects
as stored in their version control repositories with the goal of characterization
with respect to structural complexity added or removed, level of developer en-
gagement, developer experience in the project, developer experience with the
modules changed and developer specialisation from the perspective of the re-
searcher in the context of free software projects.

Figure 1 shows a model of the research following the GQM paradigm. Our
main goal is identifying the factors that influence the variation of Structural
Complexity in free software projects, what is shown in the first column. This
goal unfolds itself into the four research questions in the second column. The
research questions are associated with the metrics (or variables) in the third
column.

Determine what factors

influence Structural Complexity

in free software projects

GOAL QUESTIONS

Does developer level of

participation affect

Structural Complexity?

Does individual developers'

experience in the project affect

Structural Complexity?

Does individual developers'

experience in specific parts of

the project affect project

Structural Complexity?

Does specialization and

generalism affect project

Structural Complexity?

METRICS

Structural Complexity metrics

Level of participation

Experience in the project

Experience w. changed modules

Degree of specialisation

Fig. 1. GQM model of the research.

Each research question will be investigated in a empirical study, in which
the corresponding variables will be analysed looking for correlation relation-
ships. Further theoretical work will be done in order to identify cause-effect
relationships as well.



8 Antonio Terceiro

5.1 Variables and Operational Definitions

This section describes the variables considered in the research. They are mea-
sured with respect to each change extracted from the projects’ version control
repositories. The independent variables are related to the factors investigated
in each research question, and the dependent variables are related to the con-
cept of Structural Complexity as considered in this research. The variables are
also presented in the GQM model of the research (figure 1), in which they are
related to the corresponding research questions. While in the GQM model the
Structural Complexity variables are grouped together as “Structural Complex-
ity metrics”, below they are described individually for completeness.

Independent variables

– Level of participation — L. This variable represents whether the change was
made by a core or a peripheral developer. To determine the value of this
variable, first the analysed period is split into 20 periods of equal duration.
Each change is then considered as being made by a core developer if its
author is one of the 20% top committers in the corresponding period, or
as being made by a peripheral developer otherwise (cf. [19, 18]). Using this
definition, one should note that the same developer can be considered as a
core developer in some periods and a peripheral developer in other periods.
This is coherent with reality: developers may reduce or increase their activity
their involvement in the project in specific periods.

– Experience in the project — Ep. The number of previous changes made by
the same developer in the project as a whole

– Experience with the modules being changed – Em. Number of previous changes
by the same developer that affected the modules being changed. If more than
one module is being changed, use the average value of all modules.

– Degree of Specialisation — S. We calculate the ratio between the number
of modules the user changed previously and the total number of modules in
the project at the time of a change. Specialist developers will have this ratio
close to 0 and generalist developers will have it closer to 1. By subtracting this
ratio from 1, we have a degree of specialisation that goes from 0 (generalist
developer) to 1 (completely specialist developer).

Dependent variables

– Overall Structural Complexity — SC. This variable represents the overall
Structural Complexity of the project after each change and is obtained by
multiplying average coupling and average lack of cohesion metrics: since cou-
pling and cohesion are normally module-level metrics, we take the average of
all modules to have a project-level value.

– Variation in Structural Complexity — ∆SC. This is the increment in Struc-
tural Complexity caused by each change. For each change, this value is ob-
tained by subtracting its SC value from the SC value of its previous change.



Developers’s Contribution to Structural Complexity 9

This variable represents how much the Structural Complexity changed after
a given change was applied to the project source code.

– Absolute variation in Structural Complexity — |∆SC|. The absolute change
in Structural Complexity. It’s the absolute value of ∆SC. When restricting
the analysis to only those changes with positive or negative ∆SC, this value
can be used as a measure, respectively, of how much Structural Complexity
has increased or reduced.

5.2 Data sample and collection approach

We plan to select free software projects from 3 or 4 application domains ac-
cording to the following criteria:

– Available in Debian GNU/Linux. This is considered as a indication that the
software in question is actually used: if someone cares enough about the
project to package and maintain it for easy installation by other users, than
we consider that the project in question is minimally relevant.

– Written in C, C++ or Java. The source code analysis tool we are using was
only sufficiently tested with such languages.

– Publicly accessible version control repository. This is necessary so that we can
obtain the data from the version control repositories.

The source code repository of each project is imported locally in a git5

repository to facilitate fast and off-line history browsing. We then use a set of
scripts developed by us to mine this repository as follows:

– Determine the list of relevant commits, by identifying the commits that
changed source code files. This way we avoided analysing subsequent states
of the source code that were no different from each other.

– Checkout each relevant version and run a static source code analysis tool to
calculate the source code metrics used, namely CBO [5] and LCOM [5] (we
used the improved version from Hitz and Montazeri [12], though).

– Extract the information needed to calculate the other variables, such as mod-
ules touched in the change, the name and e-mail of developer who made the
change, date of the change etc.

– Accumulate the results for each change in a single data file per project.

After processing all the projects, their raw data is loaded in a relational
database in order to facilitate the calculations of the variables defined in the
research design.

5 http://git-scm.org/. git has support for importing repositories from CVS
and Subversion.



10 Antonio Terceiro

6 Preliminary Results

A first empirical study, addressing research question 1, was already performed
and is currently under review for publication [24]. The study consisted of a field
experiment in which data was collected from the version control repositories of
7 web server projects written in C, and compared the amounts of Structural
Complexity introduced by core and peripheral developers. We have found that
in general the changes made by core developers introduce less Structural Com-
plexity than the changes made by peripheral developers. When the analysis was
restricted to the changes that reduced Structural Complexity, the ones made
by core developers accomplished a larger Structural Complexity reduction than
those made by peripheral developers. These results demonstrate the importance
of having a stable and healthy core team to the sustainability of free software
projects.

Ongoing work includes verifying the relationship between Structural Com-
plexity and the variables related to research questions 2, 3 and 4 .

7 Conclusions

This research aims to provide an understanding about the relationship between
developer characteristics and the introduction of Structural Complexity in the
source code of free software projects. We argue that the variation in Structural
Complexity can be explained by evaluating attributes of the developers that
change the projects’ source code.

Expected contributions include extending the knowledge currently available
about software quality issues in free software projects. By identifying the factors
that affect the increase of Structural Complexity in free software projects, we
will help projects leaders to employ strategies that keep complexity in their
projects at an acceptable level, this way avoiding increase in bugs, enabling
the involvement of new contributors and easing the project’s maintenance and
evolution.

Preliminary results indicate that core and peripheral developers introduce
different levels of Structural Complexity in the source code, and that core de-
velopers have a higher impact in complexity-reducing activities. That indicates
the importance of the core team in Free Software projects.

Further work will evaluate developer experience in the project, developer
experience with specific modules and developer degree of specialization in the
project as influential factors in the evolution of Structural Complexity.

References

1. Donato Barbagallo, Chlara Francalenei, and Francesco Merlo. The Impact of
Social Networking on Software Design Quality and Development Effort in Open
Source Projects. In ICIS 2008 Proceedings, 2008.



Developers’s Contribution to Structural Complexity 11

2. Victor Basili, Gianluigi Caldiera, and Dieter H. Rombach. The Goal Question
Metric Approach. In J. Marciniak, editor, Encyclopedia of Software Engineering.
Wiley, 1994.

3. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

4. E. Capra, C. Francalanci, and F. Merlo. An Empirical Study on the Relationship
Between Software Design Quality, Development Effort and Governance in Open
Source Projects. IEEE Transactions on Software Engineering, 34(6):765–782,
Nov.-Dec. 2008.

5. S.R. Chidamber and C.F. Kemerer. A metrics Suite for Object Oriented Design.
IEEE Trans. Sftware Eng., 20(8):476–493, 1994.

6. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord, and Judith Stafford. Documenting software architecture : views
and beyond. The SEI series in software engineering. Addison-Wesley, Boston,
2002.

7. Jean M. dos R. Costa, Francisco W. Santana, and Cleidson R. B. de Souza. Un-
derstanding Open Source Developers’ Evolution Using TransFlow. In Groupware:
Design, Implementation, and Use, 15th International Workshop, CRIWG 2009,
Peso da Régua, Douro, Portugal, September 13-17, 2009. Proceedings, pages 65–
78, 2009.

8. Kevin Crowston and James Howison. The Social Structure of Free and Open
Source Software Development. First Monday, 10(2), 2005.

9. Jean-Michel Dalle, Matthijs den Besten, and Héla Masmoudi. Channeling Firefox
Developers: Mom and Dad Aren’t Happy. In Barbara Russo, Ernesto Dami-
ani, Scott A. Hissam, Björn Lundell, and Giancarlo Succi, editors, Open Source
Development, Communities and Quality, IFIP 20th World Computer Congress,
Working Group 2.3 on Open Source Software, OSS 2008, September 7-10, 2008,
Milano, Italy, volume 275, pages 265–271. Springer, 2008.

10. D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko. The Structural
Complexity of Software: An Experimental Test. IEEE Transactions on Software
Engineering, 31(11):982–995, Nov. 2005.

11. F. Brito e Abreu. The MOOD Metrics Set. In Proc. ECOOP Workshop Metrics,
1995.

12. M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented
systems. In Proceedings of the International. Symposium on Applied Corporate
Computing, 1995.

13. Chris Jensen and Walt Scacchi. Role Migration and Advancement Processes in
OSSD Projects: A Comparative Case Study. In ICSE ’07: Proceedings of the 29th
international conference on Software Engineering, pages 364–374, Washington,
DC, USA, 2007. IEEE Computer Society.

14. M. M. Lehman, J. F. Ramil, P. D. Wernick, and D. E. Perry. Metrics and Laws
of Software Evolution-The Nineties View. In Proceedings of the 4th International
Symposium on Software Metrics, 1997.

15. Héla Masmoudi, Matthijs den Besten, Claude de Loupy, and Jean-Michel Dalle.
“Peeling the Onion”: The Words and Actions that Distinguish Core from Periph-
ery in Bug Reports and How Core and Periphery Interact Together. In Cornelia
Boldyreff, Kevin Crowston, Björn Lundell, and Anthony I. Wasserman, editors,
OSS: Diverse Communities Interacting, 5th IFIP WG 2.13 International Con-
ference on Open Source Systems, OSS 2009, Skövde, Sweden, June 3-6, 2009.
Proceedings, volume 299, pages 284–297. Springer, 2009.



12 Antonio Terceiro

16. Vishal Midha. Does Complexity Matter? The Impact of Change in Structural
Complexity on Software Maintenance and New Developers’ Contributions in Open
Source Software. In ICIS 2008 Proceedings, 2008.

17. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(3):309–346, 2002.

18. G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz. Evolution of the core team
of developers in libre software projects. In Mining Software Repositories, 2009.
MSR ’09. 6th IEEE International Working Conference on, pages 167–170, May
2009.

19. Gregorio Robles and Jesus Gonzalez-Barahona. Contributor Turnover in Libre
Software Projects. Open Source Systems, pages 273–286, 2006.

20. Walt Scacchi. Understanding Open Source Software Evolution. In Nazim H.
Madhavji, Juan C. Fernández-Ramil, and Dewayne E. Perry, editors, Software
Evolution and Feedback: Theory and Practice, chapter 9. John Wiley & Sons,
2006.

21. Michael J. Scialdone, Na Li, Robert Heckman, and Kevin Crowston. Group Main-
tenance Behaviors of Core and Peripherial Members of Free/Libre Open Source
Software Teams. In Cornelia Boldyreff, Kevin Crowston, Björn Lundell, and An-
thony I. Wasserman, editors, OSS: Diverse Communities Interacting, 5th IFIP
WG 2.13 International Conference on Open Source Systems, OSS 2009, Skövde,
Sweden, June 3-6, 2009. Proceedings, volume 299, pages 298–309. Springer, 2009.

22. Katherine J. Stewart, David P. Darcy, and Sherae L. Daniel. Opportunities and
Challenges Applying Functional Data Analysis to the Study of Open Source Soft-
ware Evolution. Statistical Science, 21:167, 2006.

23. Antonio Terceiro and Christina Chavez. Structural Complexity Evolution in Free
Software Projects: A Case Study. In Muhammad Ali Babar, Björn Lundell, and
Frank van der Linden, editors, QACOS-OSSPL 2009: Proceedings of the Joint
Workshop on Quality and Architectural Concerns in Open Source Software (QA-
COS) and Open Source Software and Product Lines (OSSPL), 2009.

24. Antonio Terceiro, Luiz Romário Rios, and Christina Chavez. An Empirical Study
on the Structural Complexity introduced by Core and Peripheral Developers in
Free Software projects, 2010. To appear.

25. Yi Wang, Defeng Guo, and Huihui Shi. Measuring the evolution of open source
software systems with their communities. SIGSOFT Softw. Eng. Notes, 32(6):7,
2007.


