
Structural Complexity Evolution in Free

Software Projects: A Case Study

Antonio Terceiro and Christina Chavez

Computer Science Department – Universidade Federal da Bahia
{terceiro,flach}@dcc.ufba.br

Abstract. The fundamental role of Free Software in contemporary IT
Industry is sometimes threatened by the lack of understanding of its de-
velopment process, which sometimes leads to distrust regarding quality
of Free Software projects. While Free Software projects do have quality
assurance activities, there is still room for improvement and introduc-
tion of new methods and tools. This paper presents a case study of
structural complexity evolution in a small project written in C. The
approach used can be used by Free Software developers in their own
projects to understand and control complexity, and the results provide
initial understanding on the study of structural complexity evolution.

1.1 Introduction

Free Software1 plays a fundamental role in the IT Industry in the contempo-
rary society. Companies, governments and non-profit organizations recognize
the potential of Free Software and are at least considering it. But Free Soft-
ware is developed in a way too much different from the “conventional” software
these organizations are used to: teams are distributed throughout the world,
most of the time with no contractual obligations; normally, there are no for-
mal requirements specifications, in the sense of those we expect in traditional
software development organizations; quality assurance does happen, while not
in the way an outsider expects (and perhaps it’s not as good as it could be).
Quoting Scacchi [Scacchi, 2007], Free Software Development is not Software
Engineering done poorly, it’s just different.

While there is quality assurance (QA) activities in Free Software projects
[Zhao and Elbaum, 2003], there is a lot of room for improvement in this area.
One of the areas in which Free Software QA can advance is at the use of
project metrics to inform, guide and control development. It’s not uncommon
to find projects in which the lead developer(s) lost the interest and there are
users/contributors willing to continue the development, but the complexity of
the code makes it more practical for them to start a new project as a replace-
ment to the original. Sometimes the lead developer(s) realize that the code

1 also referred to in the research community as “Open Source Software” (OSS),
“Free/Open Source Software” (FOSS), “Free/Libre/Open Source Software”
(FLOSS) etc.

2 Antonio Terceiro and Christina Chavez

became so complex that it’s more cost-effective for them to rewrite large parts
of the software, or even to rewrite it entirely from scratch, than investing time
in enhancing existing code.

So, if Free Software developers have tools and methods to understand and
tame the complexity of their code, there will be a more healthy Free Software
ecosystem. Less complex code may promote maintainability and help Free Soft-
ware projects to get and retain new contributors.

This paper goals are twofold: first, to experiment an approach for studying
the evolution of structural complexity in Free Software projects that can be
used by Free Software developers in their own projects; second, to provide initial
results on the study of structural complexity evolution in Free Software projects
written in C (so we can e.g. compare them with the Java projects studied in
[Stewart et al., 2006]). For that, we present a case study in which we analyze
the evolution of structural complexity in a small Free Software project during
a period of approximately 15 months.

The remainder of this paper is organized as follows: related work is described
in section 1.2; section 1.3 briefly describes the tool infrastructure used to extract
structural complexity metrics from projects written in the C language; section
1.4 presents the case study; and finally, we provide final remarks and discuss
future work in section 1.5.

1.2 Related Work

Stewart and colleagues studied 59 projects written in Java that were available
on Sourceforge [Stewart et al., 2006], using as a software complexity measure
the metric “CplXLCoh”, the product of Coupling (“Cpl”) and Lack of Cohesion
(“LCoh”). They found four patterns on software complexity evolution among
those projects: 1) early decreasers, in which the complexity starts to decrease
in the very beginning of the project’s public availability, then gets stable for
a period, and then starts a slight growing trend; 2) early increasers, where
the complexity starts to increase just during the beginning of the project, and
after some time gets stable; 3) midterm increasers, which experiences a faster
growing of the complexity several months after the start of the project; and 4)
midterm decreasers, that continued to decrease complexity during the middle
of the observed period before stabilizing.

Capiluppi and Boldyreff [Capiluppi and Boldyreff, 2007] presented an ap-
proach to use coupling information to indicate potentially reusable parts of
projects, which could be distributed as independent projects and reused by
other software in the same application domain or with similar non-functional
requirements. Their approach was based on a instability metric, as in the work
of Martin [Martin, 2003]. This metric is defined in terms of afferent coupling
(number of modules calling the module in question, Ca) and efferent coupling
(number of modules that the module in question calls, Ce), as I = Ce

Ca+Ce

.
They show that modules (represented in their study by folders) with low insta-

1 Structural Complexity Evolution in FS Projects: A Case Study 3

bility (i.e. stable modules) are good candidates to be turned into independent,
external modules.

Wu [Wu, 2006] studied the dynamics of Free Software projects evolution,
and argues that it happens in the form of punctuated equilibrium: the projects
alternate between periods of localized and incremental changes and periods with
deep architectural changes.

1.3 egypt: tool support for extracting coupling and

cohesion data from C programs

egypt is program originally developed by Andreas Gustafsson2. It works by
reading intermediate files generated by the GNU C Compiler and producing
as output a call graph in the format used by the Graphviz graph visualization
software 3, so we can visualize the call dependencies between functions in C
source code.

We made the following main modifications in egypt to use in this study:

– Implementation of variables usage detection, to identify which functions use
which variables. This is used for calculating both coupling between modules
(in the case where modules use variables from other modules) and lack of
cohesion for a given module.

– Addition of an option to group the calls and variable usages by module, so
that we can have a module dependency view. The original egypt only pro-
duced graphs at the function level, which makes it impossible to understand
the structure of non-trivial software.

– Refactoring of the egypt script into an object-oriented design to be able to
plug different extraction and reporting modules.

– Implementation of a metrics output which, instead of producing Graphviz in-
put files, produces a metrics report on the extracted design including coupling
and cohesion data.

Our modified version is available as a git repository at http://github.com/
terceiro/egypt.

Since egypt extracts coupling data, it can also be used to carry studies like
the one by Capiluppi and Boldyreff [Capiluppi and Boldyreff, 2007] to identify
potentially reusable modules in Free Software Projects. This is not our interest
in this paper, though.

1.4 Case study: the Ristretto project

Ristretto4 is a fast and lightweight picture-viewer for the Xfce desktop environ-
ment. It’s written in C, uses the GTK+ user interface toolkit and is licensed

2 http://www.gson.org/egypt/
3 http://www.graphviz.org/
4 http://goodies.xfce.org/projects/applications/ristretto

4 Antonio Terceiro and Christina Chavez

under the GNU General Public License, version 2 or later. In this study we an-
alyze the Ristretto project with the goal of characterizing it with respect

to size and complexity over time from the perspective of developers.

1.4.1 Planning

In this study, our “population” is the series of releases the Ristretto project had
since the beginning of its development. This includes 21 consecutive releases,
from 0.0.1 to 0.0.21, spanning a period of approximately 15 months.

For each release of the project, the following data was extracted:

– Independent variables:
– Release day (RD): the number of days that has passed since the first re-
lease. The first release itself has RD = 0.

– Dependent variables:
– Physical Source Lines of Code (SLOC).
– The product of average module coupling and average module lack of cohe-
sion (CplXLCoh), as in [Stewart et al., 2006], as a measure of complexity.
We have used the classic coupling and lack of cohesion metrics by Chi-
damber and Kemerer [Chidamber and Kemerer, 1994].

We formulated two hypothesis for this study, which are described below.

Hypothesis 1. We want to test whether the project presents a consistent growth,
as reported in the literature for both “conventional” Software Engineering
[Lehman et al., 1997] and for Free Software projects [Koch, 2007]. Since we are
interested only in testing for consistent growth and don’t need a precise predic-
tion of project size, we consider enough to test for a linear correlation between
the date of release and the size of the project. Our null hypothesis H1

0 is that
there is no linear correlation between time and size of the project, and our
alternative hypothesis H1

A stands for a positive linear correlation between the
variables:

H1
0 : rRD,SLOC = 0 H1

A : rRD,SLOC > 0

Hypothesis 2. To test whether the project becomes more complex as the time
passes, we want to verify how does our complexity metric evolve. The theory
suggests that software projects tend to become more complex through time,
unless explicit actions are taken to prevent it [Lehman et al., 1997]. Our null
hypothesis H2

0 , then, says there is no linear correlation between time and com-
plexity; our alternative hypothesis H2

A is that there is a positive linear correla-
tion between them:

H2
0 : rRD,CplXLCoh = 0 H2

A : rRD,CplXLCoh > 0

1 Structural Complexity Evolution in FS Projects: A Case Study 5

1.4.2 Data Extraction

For measuring SLOC, we used David A. Wheeler’s sloccount tool, available
at http://www.dwheeler.com/sloccount/. For each release, sloccount is run
and only the total Physical Source Lines of Code count is taken.

For measuring CplXLCoh, we used our modified version of egypt.
Ristretto’s Subversion repository was imported into a git5 repository. We

then used a script that iterates through all the releases, gets the release date
from the version control data, checks out the source code of the given release,
invokes sloccount to get the size of the project at that release, builds the
project so the GNU C Compiler generates the needed intermediate files, and
invokes egypt to extract the design information from the GCC intermediate
files.

1.4.3 Data analysis

Figure 1(a) presents the evolution of size in the Ristretto project, using the day
of release as data in the X axis (while using the version string as label), and
SLOC as the Y-axis. The plot shows that Ristretto is consistently growing:
it goes from approximately 2500 SLOC in the first release to more than 6000
SLOC in the last observed release. On the other hand, looking at the latest
releases makes us wonder if the growth rate isn’t decreasing.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 100 200 300 400 500

S
LO

C

Release Day

(a) Growth of Ristretto project over
time

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100 200 300 400 500

C
pl

X
Lc

oh
(L

C
O

M
1)

Release Day

(b) Evolution of the complexity metric
in the Ristretto project

Fig. 1.1. Ristretto evolution data

The correlation test, using Pearson’s method, gives us rRD,SLOC = 0.9041602,
with p < 0.01. This way we are able to reject the null hypothesis H1

0 and accept
the alternative hypothesis H1

A: the current data allows us to say that there is
a positive linear correlation between the release day and the size, measured in
Physical Source Lines of Code.

5 http://www.git-scm.org/

6 Antonio Terceiro and Christina Chavez

Figure 1(b) shows the data for our complexity metric. The plot shows that
although the complexity in increasing, there are specific releases in which either
the complexity does not increase significantly or even the complexity decreases
in comparison with the previous release. This behavior is discussed in more
detail in the section 1.4.4

The correlation test for RD and CplXLCoh gave us rRD,CplXLCoh =
0.8636375 with p < 0.01, also using Pearson’s method. This way we can re-
ject our null hypothesis H2

0 and accept our alternative hypothesis: there is a
linear correlation between release day and complexity.

1.4.4 Interpreting the Results

The growth data allows us to assert that the project is consistently growing
since it’s first release. This suggests it’s being actively developed and is receiving
new features as an effect of new user requirements. But growth is not out main
interest in this study.

The complexity data reveals interesting issues. In the long term, the com-
plexity grows as the time passes, but the curve we could draw through the data
points shows discontinuities (see figure 1(b)):

1. Approximately in the 40th day, in the 6th release of Ristretto, the complex-
ity increase is attenuated.

2. Approximately in the 150th day, in the 16th release, the complexity de-

creases in comparison with the previous release.
3. Approximately in the 450th day, in the 21th and last release, the complexity

also seems to increase less in comparison with the previous release than it
increased in the previous release in comparison with the release before it.

All these discontinuities coincide with major architectural changes in Ristretto:
releases 0.0.6, 0.0.16 and 0.0.21 introduced new modules in comparison with
their respective previous releases. Figure 1.2 shows the four different architec-
tures Ristretto had during its life cycle: the leftmost graph shows the architec-
ture of the first release, and them the architecture in releases 0.0.6, 0.0.16 and
0.0.21.

Fig. 1.2. Ristretto’s architectural evolution. Graphs by Graphviz from egypt output.

1 Structural Complexity Evolution in FS Projects: A Case Study 7

It is easy to understand why the introduction of new modules has an impact
in complexity increase. As the newly introduced module tends to be less complex
than the previously existing ones, and the sum of the complexities is now divided
by n + 1 instead of n, the new module brings down the average complexity
metric.

Ristretto exhibits the behavior described by Wu [Wu, 2006]: it alternates
periods of incremental change, in which the complexity increases, with moments
of rupture in which the architecture changes. In the case of Ristretto, these
architecture changes made it less complex, or at least attenuated the complexity
increase trend at that moment.

1.4.5 Limitations of this study

We chose a small project to study on purpose, since we wanted to do a ex-
ploratory study and experiment the approach we are developing. A larger
project may not exhibit a similar behavior as Ristretto.

Although the version control history data lists 13 different contributors to
the Ristretto source folder, we later identified that actually only one developer
made changes to the source code. The other contributors’ changes were mainly
updates to user interface translations, which are separated from the C source
code. This way we have no data that allows us to investigate the relationship be-
tween the structural complexity and the number of developers who contributed
in a given period (for example).

1.5 Conclusions

This paper presented a case study on structural complexity evolution. We ana-
lyzed 21 versions of the Ristretto project, and concluded it grows consistently,
and its structural complexity increases as time passes. Both size and complexity
metrics have a high correlation with the release day. We identified that spe-
cific releases where structural complexity decreases or starts to increase more
slowly than in the previous release seem to be related to significant architectural
changes. These changes, in the case of this small project, were additions of new
modules.

We believe that our approach can be used to make larger-scale studies. These
include individual studies with projects larger than Ristretto and studies com-
paring the structural complexity evolution of different projects. By comparing
several different projects, perhaps we’ll be able to associate different patterns
of structural complexity evolution with characteristics of the projects. In spe-
cial, it would be interesting to compare the results of studying C projects with
the results of the Java projects studied by Stewart et al [Stewart et al., 2006].
Ristretto, as this paper has shown, seems to belong to the early increasers group
described by them. Other type of study that may produce interesting results is
studying structural complexity evolution in a more fine-grained scale: instead

8 Antonio Terceiro and Christina Chavez

of analyzing only the released source code, we can use the history stored in the
version control system and analyze every single revision to identify the exact
changes that introduced either an increase in complexity or a refactoring that
made the software less complex.

The approach used in this paper can also be used by Free Software developers
to monitor the structural complexity of their C projects. By using the egypt

tool to obtain both design graphs and metrics, they can verify whether a specific
change increases the overall system complexity or if a refactoring reduced the
complexity in comparison with a given previous state of the code. They can also
inspect the history of the projects in points in which the complexity decreased
to learn important lessons about their own projects.

References

[Capiluppi and Boldyreff, 2007] Capiluppi, A. and Boldyreff, C. (2007). Coupling
patterns in the effective reuse of open source software. In FLOSS ’07: Proceedings

of the First International Workshop on Emerging Trends in FLOSS Research and

Development, page 9, Washington, DC, USA. IEEE Computer Society.
[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. (1994). A met-
rics suite for object oriented design. IEEE Transactions on Software Engineering,
20(6):476–493.

[Koch, 2007] Koch, S. (2007). Software evolution in open source projects—a large-
scale investigation. J. Softw. Maint. Evol., 19(6):361–382.

[Lehman et al., 1997] Lehman, M., Ramil, J., Wernick, P., and Perry, D. (1997). Met-
rics and laws of software evolution-the nineties view. In Proceedings of the 4th

International Symposium on Software Metrics.
[Martin, 2003] Martin, R. C. (2003). Agile Software Development: Principles, Pat-

terns, and Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA.
[Scacchi, 2007] Scacchi, W. (2007). Free/open source software development: Recent
research results and methods. In Zelkowitz, M. V., editor, Advances in Computers,
volume 69, pages 243–269. 2007 edition.

[Stewart et al., 2006] Stewart, K. J., Darcy, D. P., and Daniel, S. L. (2006). Opportu-
nities and challenges applying functional data analysis to the study of open source
software evolution. Statistical Science, 21(2):167–178.

[Wu, 2006] Wu, J. (2006). Open source software evolution and its dynamics. PhD
thesis, University of Waterloo, Waterloo, Ont., Canada, Canada.

[Zhao and Elbaum, 2003] Zhao, L. and Elbaum, S. (2003). Quality assurance under
the open source development model. J. Syst. Softw., 66(1):65–75.

