
An Empirical Study on the Structural Complexity
Introduced by Core and Peripheral Developers in

Free Software Projects
Antonio Terceiro, Luiz Romário Rios, Christina Chavez

Software Engineering Lab (LES)
Computer Science Department

Federal University of Bahia
{terceiro,luizromario,flach}@dcc.ufba.br

Abstract—Background: Several factors may impact the
process of software maintenance and evolution of free software
projects, including structural complexity and lack of control
over its contributors. Structural complexity, an architectural
concern, makes software projects more difficult to understand,
and consequently more difficult to maintain and evolve. The
contributors in a free software project exhibit different l evels of
participation in the project, and can be categorized as coreand
peripheral developers.

Research aim: This research aims at characterising the
changes made to the source code of 7 web server projects
written in C with respect to the amount of structural complexity
added or removed and the developer level of participation.

Method: We performed a observational study with historical
data collected from the version control repositories of those
projects, recording structural complexity information fo r each
change as well as identifying each change as performed by a
core or a peripheral developer.

Results and conclusions: We have found that core developers
introduce less structural complexity than peripheral developers
in general, and that in the case of complexity-reducing activ-
ities, core developers remove more structural complexity than
peripheral developers. These results demonstrate the importance
of having a stable and healthy core team to the sustainability of
free software projects.

I. I NTRODUCTION

The problem of software aging, introduced by Parnas in
1994, is a well-known problem in the Software Engineering
field [1]. It has two causes: the first is “lack of movement”,
when a software project fails to deliver an updated product
that fulfils the changing needs of its users. The second cause
of software aging is “ignorant surgery”: the software is sub-
sequently changed by people who do not fully understand its
design, and after some time even the creators of the design
do not understand it anymore; changing the software becomes
harder and more error prone.

According to Parnas, software aging is inevitable, just like
human aging. While there are measures that can be taken
to slow down the effects of software aging, even successful
projects will get old and suffer the consequences of aging:

older software requires more effort for being updated as time
passes, bug fixes tend to cause new bugs, and can even exhibit
unsatisfactory performance.

The aging phenomenon can be also observed in the context
of free software1 projects. For instance, GNOME is a world-
wide project that provides the GNOME desktop environment,
a desktop system, and the GNOME development platform,
a framework for building applications that integrate into
the rest of the desktop. GNOME had two of its compo-
nents,eog, GNOME’s image viewer andgnome-session,
GNOME’s session management software, completely rewritten
from scratch.2

In older projects, the code base becomes so difficult to
maintain that their maintainers decide that rewriting themwill
require less effort than to keep maintaining it. Sometimes the
developers believe that rewriting their project (or large parts
of it) is absolutely necessary for them to be able to evolve
the project. Less complex code may facilitate the addition of
new features and bug fixing in a sustainable way and therefore
supports maintainability.

These rewrites take time and effort, so every project leader
would certainly prefer not to deal with them. If the factors that
contribute to added complexity in free software projects can
be identified and characterized, project leaders would possibly
be able to avoid such rewrites.

Several factors may impact the process of software main-
tenance and evolution. The internal quality of the software
that is to be evolved and maintained is one of the most
important: the lower the quality of the source code and other
artifacts, the larger is the effort to change them. In this context,
the structural complexityof the source code is one of the
dimensions of the internal quality.

One of the characteristics of free software projects is the
lack of control over the project developers. They usually join

1in our work, “free software” is used as a synonym for “open source
software” (OSS), ‘free/open source software” (FOSS) and “free/libre/open
source software”(FLOSS).

2These rewrites were described in their wiki pages, respectively
http://live.gnome.org/EyeOfGnome/EogNg and http://live.gnome.org/
SessionManagement/NewGnomeSession.

and leave projects based on their motivation or needs, and
present differentlevels of participation. The convention is
to categorize them as eithercore developersor peripheral
developers. The former are the most active developers, who
perform most of the work, and are in general in charge of the
important decisions regarding the project. The later contribute
less often, and normally have little decision power in the
project [2], [3].

In this paper, we explore the different levels of developers
participation as a factor that may influence the amount of
structural complexity in free software projects. We want to
verify whether core and peripheral developers introduce dif-
ferent amounts of structural complexity in the code, and also
whether they remove different amounts of complexity during
activities that reduce the complexity of the source code, such
as refactorings.

The remainder of this paper is organized as follows: section
II presents the background for this study; section III presents
the hypotheses that we investigate in this paper; section IV
describes our research design; in section V we analyse the
results obtained; section VI discusses threats to the validity of
this study; section VII discusses similar studies and compares
our study with them; finally, in section VIII we discuss our
results as well as possibilities of future work.

II. BACKGROUND

The following sections present background in the main sub-
jects addressed by this paper: free software projects, structural
complexity of software and the concept of Core and Periphery
as different levels of contribution in free software projects.

A. Free Software

We call “free software” every software product that is
available to its users under a license that allows it to be
freely3 studied, modified, and redistributed, according to the
“Free Software Definition” [4], published by the Free Software
Foundation.

The most interesting aspect of the nature of free software,
from a Software Engineering point of view, is its development
process. A free software project starts when an individual
developer, or an organization, decides to make a software
publicly available on the internet so that it can be freely used,
modified and distributed. After an initial version is released,
and with some effort in advertising it in the appropriate
channels, independent users start using it, and those userswho
are also software developers are able to inspect the software’s
source code and propose changes to it. These changes are sent
back to the original developer(s) in the form ofpatches4. The
project leader(s) review this change proposals and apply (or
not) them to their own version, so that when a new version of

3As free software advocates are used to remind, the “free” here is “free”
as in “freedom”, not as in “free lunch” (“gratis”).

4A patch is a file that describes the changes to one or more files,normally
of textual content, by describing which lines to remove and which lines to add.
After receiving a patch the developer can reproduce the changes proposed by
the sender in his/her own copy of the source code.

the software is released, end users will have access to the new
functionalities of bug fixes proposed by these contributors.

In the course of time, the most frequent contributors gain
the trust from the initial developer(s), and can receive direct
write access to the official source code of the project. That
way they will be able to make changes directly instead of
having to pass through the review of the original developers.
This process of developers joining free software projects may
range from very informal to very formal, depending on the
project. Small projects normally have informal proceduresfor
that, e.g. one existing developer just offers an account in the
version control system to the new contributor. Larger projects,
on the other hand, may have more “bureaucratic” processes
for accepting a new developer with privileged access to the
project’s resources, such as filling forms with an application,
signing terms of copyright transference and other procedures.

The development is normally driven with the help of a
version control system (VCS), where the latest version of the
source code is stored in a source code repository. The VCS
records every change ever made to the source code, as well
as the author and date of the changes. While the repository
is often publicly available for read access, write access is
restricted to a limited group of developers. Other developers
will need their changes (patches) to be reviewed by a developer
with the needed privileges in order to get their contributions
into the project’s official repository. This process is illustrated
by figure 1.

Project

Repository

repository

write

repository

write

repository

write

repository

write

patch patch

Fig. 1. Free software development by means of a VCS repository.

There are variants of this process. For example, recently
the usage of distributed version control became quite popular.
With distributed VCS, there is no need for a central repository.
Each developer has its own repository, which may be published
for other to access. But the concept of an official repository,
blessed by the project leaders, still exist.

The following characteristics make free software projects
different enough from “conventional” software projects, and

also makes them an interesting object of study:

• Source code availability.Source code of free software
projects is always available on the internet. Although
most of the projects have a publicly-accessible version
control repository, there are projects that do not have one
(e.g. the Lua Programming language [5]).

• User/developer symbiosis.In most free software projects
the developers are also users of the software, and they
also provide requirements. Maybe because of that, several
free software projects do not have explicit requirement
documents, and the development flows on a rhythm in
which the developers are able to satisfy their own needs.

• Non-contractual work. A large amount of work in free
software projects is done in a non-contractual fashion.
This does not imply that the developers are necessarily
volunteers, but only that there is no central management
with control over all of the developers’ activities.

• Work is self-assigned.Since most free software projects
don’t have a central central management with control over
the contributors’ activities, the work of these contributors
is normally self-assigned: volunteer developers work on
the parts of the project that most appeal to them.

• Geographical Distribution. In most Free Software
projects the developers are spread among several different
locations in the world. In the projects with high geograph-
ical dispersion, almost all communication is performed
through electronic means.

Although the Software Engineering literature tends to por-
trait Free Software as a homogeneous phenomenon[6], most of
these characteristics do not apply to all free software projects,
and some of them may be manifest in different ways across
projects.

B. Structural complexity

Structural complexity is an architectural concern: it involves
both the internal organization of software modules, as well
as how these modules relate to each other [7], [8]. structural
complexity influences the developer’s time: a more complex
software is expected to require more effort from developersto
be comprehended in maintenance activities [9].

Several aspects of Software Design can be considered when
evaluating structural complexity. We can consider, among
others, coupling [10], [11], cohesion [10], and inheritance [10],
[11].

While inheritance is specific to the object-oriented
paradigm, coupling and cohesion are more generally appli-
cable. Every programming paradigm has a notion ofmodule,
whether it is called “module”, “class”, “aspect”, “abstract data
type”, “source file”, etc. Having modules, one can always
analyse a program and identify which other modules a module
refers to and thus have a notion of coupling, and also verify
how the subparts of a given module interact with each other
to evaluate the cohesion of such a module.

In an experimental setting with professional software devel-
opers, Darcyet al found that more complex software requires

more effort for maintenance activities [9]. Moreover, theyver-
ified that neither coupling nor lack of cohesion by themselves
could explain the decrease in comprehension performance of
the developers; only when considered together (by multiplying
the two) they presented an association with higher maintenance
effort. The authors claim that when considering structural
complexity, one must consider coupling and cohesion together.

In this work, we follow Darcyet al and consider both cou-
pling and cohesion in our definition of structural complexity.
We provide, however, a formal definition of this metric, as
follows.

The structural complexity of a module is given by multiply-
ing coupling (Chidamber and Kemerer’s CBO [10]) and lack
of cohesion (Hitz and Montazeri’s LCOM4 [12]) metrics. A
project-wide value for structural complexity can be obtained
by taking the average structural complexity among all mod-
ules. GivenM(p), the set of modules in a projectp, we have:

SC(p) =

∑

m∈M(p)

CBO(m) × LCOM4(m)

|M(p)|

C. Structural Complexity in free software projects

Midha [13] studied projects from sourceforge.net and ver-
ified that increases in complexity leads to increase in the
number of bugs in the source code, decrease in contributions
from new developers and increase in the time taken to fix bugs.
Although using a different concept of structural complexity
by considering MacCabe’s Cyclomatic Complexity and Hal-
stead’s Effort5, these results demonstrate that complexity has
nasty effects on Free Software projects. We speculate that an
increase in structural complexity as defined in this study here
has similar effects in free software projects, as it did in the
controlled experiment by Darcyet al [9].

Stewartet al studied 59 projects written in Java that were
available on Sourceforge [14], using the product of coupling
and lack of cohesion as their structural complexity measure.
They verified 4 different patterns of structural complexity
evolution, of which 2 presented growing trend in the end of
the period. The other 2 presented stabilization in the end ofthe
period: none of the identified patterns featured a complexity
reduction trend. A previous study of ours also indicated a
growing trend in structural complexity on another (but smaller)
project written in C [15].

Increasing complexity trends are not an exclusive feature of
free software projects, and are not recent news: the seminal
work of Lehman on software evolution already identified it,
and that led to the formulation of the second law of software
evolution the Law of Increasing Complexity [16]. That law,
formulated in the context of studies on proprietary software
systems, states that as systems evolve, their complexity in-
creases unless work is done to maintain or reduce it.

5These two measures represent respectively the internal complexity of
subroutines and the overall vocabulary size of the code base. They reflect a
different aspect of structural complexity, at the subroutine level. Here we are
looking at structural complexity at the design/architecture level, considering
the relationship between modules and between the sub-partsof each module.

For now, we know that i) software complexity is associated
with undesirable effects (more maintenance effort, more bugs,
less attraction of new developers) and ii) structural complexity
tends to not decrease, and in a reasonably large amount of
cases, it tends to grow. That leads us to the following question:
why does structural complexity increase in the context of Free
Software projects?

In this paper we investigate whether developer attributes can
explain the variation in structural complexity in free software
projects, specifically whether core and periphery developers
contribute differently to such variation. The concept of core
and periphery an important aspect in the study of the free
software development process, and is described in the next
section.

D. Core and Periphery in free software Projects

Normally, a Free Software project is started by a single
developer, or by a group of developers, in need of addressing
a particular need. After there is a usable version, it is released
to the public under a Free Software license which allows
anyone to use, change and distribute a copy of that software.
As new users get interested in the project, some of them
may start to contribute to it in several possible ways: with
code for new features or bug fixes, with translations into their
native languages, with documentation, or with other types of
contribution. At some point, then, the project has a vivid and
active community: a group of people that gravitate around a
project, with varied levels of involvement and contribution.

The “onion model” [2], [3] became a widely accepted
representation of what happens in a Free Software project, by
indicating the existence of concentric levels of contribution: a
small group of core developers do the largest part of the work;
a larger group makes direct, but less frequent contributions in
the form of bug fixes, patches, documentation, etc; an even
larger group reports problems as they use the software, and
the largest group is formed by the silent users who only use
the software but never provide any type of feedback.

The processes by which participants migrate from one group
to another are very different from one community to the other:
communities may adopt more formal and explicit procedures
for that, or use a more relaxed approach and let things flow
“naturally”. But in general the achievement of central roles
(and thus more responsibility, respect and decision power)
are merit-based: a developer becomes a leader by means of
continuous valuable contributions to the community [17].

Since most of the work is done by a core team, it is
important for projects to keep a healthy and active core team.
Some projects are able to keep its core team with few or no
changes across its entire history, while others experiencea
succession of different generations of core developers [18],
[19].

The relationship between core contributors and peripheral
(non-core) members of a community are not always smooth:
sometimes the core tends to work on their own demands and to
give little attention or even to ignore completely the demands
of the periphery [20], [21]. From an individual point of view,

core and periphery members also exhibit different behaviour
while debating subjects related to the project [22] or in the
bug reporting activity [21].

III. R ESEARCH HYPOTHESES

As discussed earlier, structural complexity raises the main-
tenance cost of a software project, because the code becomes
harder to understand, and in consequence harder to modify. In
free software projects, such an increase in effort may represent
an extra difficulty for gathering new contributors. Failingto
attract contributors represents a threat to the project sustain-
ability [23], specially those which are not mainly funded bya
single organization and rely on the contributions of volunteers.

There are differences between core and peripheral contrib-
utors with respect to the volume of work done and behaviour
in communication inside the project. This begs the questionas
if the quality of their contributions could be also different. We
want to evaluate the amount of complexity that they introduce
into the code. Since core developers have deeper knowledge
of the software architecture, it is expected that their changes
to the source code do not add as much structural complexity
as the changes made by peripheral developers do. Thus the
first hypothesis we want to test in this paper is the following:

H1: changes made by core developers introduce less
structural complexity than those made by periphery
developers.

Several projects also undertake development effort in order
to refactor the code and thus reduce complexity [24]. As
formulated by Lehman [16], this is needed in order to keep
the project under a sustainable level of complexity. While
both core and periphery developers can participate in such
a task, core developers are probably more successful at it than
periphery developers, and we want to verify that empirically.
Our second hypothesis is then related to the reduction of
structural complexity in the source code:

H2: among the changes that reduce structural com-
plexity, the ones made by core developers achieve
greater structural complexity reduction than those
made by periphery developers.

IV. RESEARCHDESIGN

In order to test our hypotheses, we designed and executed
an empirical study, which is described in this section. Care
was taken in order to provide all information needed by the
reader to assess the quality of the study and the applicability
of its results [25].

The research method used was anobservational study,
in which a phenomenon is observed in its natural setting
(as opposed to a controlled lab environment, used in a true
experiment).

Our data collection approach was to mine the version
control systems of a selected group of free software projects
from the web server application domain, and to collect data
from each change to the project source code. For each change,
we registered the date of the change, the variation of structural

Characterize changes made by

core and peripheral developers

in free software projects

GOAL QUESTIONS

Do core developers introduce

less structural complexity than

peripheral developers? (H1)

Do core developers remove

more structural complexity than

peripheral developers? (H2)

METRICS

Absolute structural complexity

variation - |�SC|

Structural complexity

variation - �SC

Developer level of

participation - L

Fig. 2. GQM diagram of the study

complexity accomplished by the change, and whether the
change was made by a core or a peripheral developer.

The study definition, using a GQM template [26] is as
follows: In this study weanalysechanges made to the source
code of free software projectsfor the purpose ofof characteri-
zationwith respect tostructural complexity added or removed
and level of developer participation,from the perspectiveof
the researcherin the context of the web server application
domain.

Figure 2 presents a GQM diagram of the study. In such
diagram, the first column, “Goals”, identifies the problems
that a given study is trying to solve. “Questions” identifies
the questions that, when answered, will provide a solution
to the problems, and “Metrics” identifies which metrics (or
“variables”) need to be measured so that we achieve answers
to the related questions. Arrows connect goals and their
associated questions, as well as questions and their associated
metrics. In the case of the current study, there is a single goal
with two questions. Our questions are directly mapped to the
research hypotheses presented in section III.

The metrics associated to each research question in figure
2 are presented in section IV-A. Our data collection approach
and the obtained sample are described in section IV-B.

A. Variables and operational definitions

The following variables are considered in the study:

• Independent variable

– L, the level of involvement of the author of the given
change in the project at that point in time. This is
determined by splitting the entire studied period in
20 periods of equal duration, and for each period
identifying the 20% top committers as the core team
(cf. [18], [19]). The reader should note that by
according to this definition, the same developer can
be considered as a core developer in some periods
and a peripheral developer in other periods. This
is coherent with reality: since developers often do
not have any formal responsibilities with with the
projects, they may reduce or increase their activity
in the project in specific periods, and thus can shift
from the core to the periphery and vice-versa.

• Dependent variables

– SC, the overall structural complexity of the project
after each change, as described in section II-B.

– ∆SC, the increment in structural complexity in each
change. For each change, this value is obtained by
subtracting itsSC value from the previous change’s
SC value. This variable represents how much the
structural complexity changed after a given change
was applied to the project source code.

– |∆SC|, the absolute change in structural complexity
(i.e. the absolute value of∆SC).

B. Sample and data collection

We started by identifying all web server packages in the
Debian GNU/Linux archive. This decision was made in order
to select projects that were being actually used: if a web server
software is properly packaged and maintained in Debian, it
means that there is interest in it to the point that someone vol-
unteers to maintain an automatic installation package so that
users can install it without the need for manual configuration6.

This provided us 21 web server projects as a starting point.
Since we needed to harvest the version control history of the
projects in order to characterize the changes made to the source
code, we needed that the projects have an accessible version
control repository. Due to a temporary limitation in our tooling
for source code analysis, we had to stick to projects written
in the C language. Since C is a language commonly used
for infrastructure software, most of the web servers identified
are written with it. After applying both restrictions, we could
identify 7 projects to work with. They are listed in table I.

The source code repository of each project was imported
locally in agit7 repository in order to facilitate fast and off-
line history browsing. We used a set of scripts developed by
us to mine this repository as follows:

• Determine the list of relevant commits, by identifying
the commits that changed source code files. This way we

6Although the first author of this paper is a Debian maintainer, he is not
maintainer of any of the web server packages evaluated. Also, none of the
authors is affiliated with any of the studied projects.

7http://git-scm.org/.git has support for importing repositories from CVS
and Subversion.

TABLE I
PROJECTS SELECTED FOR ANALYSIS

Project Start End Commits Developers
aolserver 2000/05 2009/05 1125 22
apache 1999/06 2009/11 9663 72
cherokee 2005/03 2009/10 1545 8
fnord 2001/08 2007/11 99 2
lighttpd 2005/02 2009/10 775 6
monkeyd 2008/01 2009/06 207 4
weborf 2008/07 2009/10 139 3

avoided analysing subsequent states of the source code
that were no different from each other.

• Checkout each relevant version and run a static source
code analysis tool in order to calculate the source code
metrics used, namely CBO [10] and LCOM [10] (we
used the improved version from Hitz and Montazeri [12],
though).

• Accumulate the results for each change in a single data
file per project.

After processing all the projects, we loaded their raw data
in a relational database in order to facilitate the evaluation of
L, SC, ∆SC and|∆SC|. During this process we excluded 7
commits that had no previous commit to compare to (i.e. the
very first commit of each project).

Table I lists some aggregated information about the data
sample. The “Start” and “End” columns show year and month
of the first and last changes considered, respectively, according
to the project’s version control system. The “Commits” column
displays the number of changes (commits) considered for
each project, and the “Developers” column counts how many
different developers were responsible for these considered
changes.

The following tools were used to mine the repositories:

• The static source code analysis was performed with
analizo8, a multi-language source code analysis tool
we have been working on.

• The history analysis of the version control repositories
was made by theanalizo-metrics-history script
from theanalizo-utils package9

• The analysis specific to this study was done by some
ad-hoc Ruby code.

The complete package for this study, with data, local scripts
etc is available on the web at the following address: http:
//www.dcc.ufba.br/∼terceiro/papers/cpsc.tar.gz.

V. DATA ANALYSIS AND RESULTS

The full dataset contained 13553 changes, of which 9944
(73.36%) were made by core developers, and 3609 (26.63%)
by peripheral developers. In order to test our hypotheses, we
excluded from the analysis the changes that did not make any
changes to the structural complexity metricSC (i.e. ∆SC =
0). The remaining changes are similarly distributed between
the two groups: of 2513 changes, 1994 (79.35%) were made

8http://github.com/terceiro/analizo
9http://github.com/terceiro/analizo-utils

by developers considered as core developers, while the other
519 (20.65%) were made by peripheral developers.

To testH1, we need to compare∆SC for the subset of
changes made by core developers and the ones made by
periphery developers.H1 can then be formalized as follows:

H1 : µ∆SCcore
< µ∆SCperiphery

We used a t-test to verify the hypothesis, and were able to
reject the null hypothesis that there is no difference between
the means and accept the alternative hypothesisH1, with
p < 0.05 (p = 0.01515265). This demonstrates that our hy-
pothesis thatchanges made by core developers introduce less
structural complexity than those made by periphery developers
is supported by the data.

To testH2, we must consider only the cases in which there
is a decrease in structural complexity. To do that, we filtered
the dataset again and kept only the changes in which∆SC <

0. In this filtered dataset we have 1165 changes, of which 939
(80.60%) were made by core developers and 226 (19.40%)
by periphery developers. We want then to verify whether the
amount of structural complexity removed by core developers
is greater than the amount removed by periphery developers,
what can be formalized as follows:

H2 : µ|∆SC|core
> µ|∆SC|periphery

The t-test forH2 allowed us to reject the null hypothesis of
the two variables being equal, and accept the alternativeH2

with p < 0.05 (p = 0.01091324). The data support our second
hypothesis as well:among the changes that reduce structural
complexity, the ones made by core developers achieve greater
structural complexity reduction than those made by periphery
developers.

Table II presents descriptive statistics of the dataset used in
these results.

The data analysis was performed with the R system [27]
and RKWard, a frontend to R10.

VI. T HREATS TO VALIDITY

While carefully designed, this study has some limitations
that represent threats to its generalisability.

The careful reader will notice that although all variables
tested in section V are not normally distributed (see table II),
we still used the t-test for comparing them. The t-test usually
requires that the variables have a normal distribution, butas
noted by Wohlinet al [28], it is robust enough to support
some deviation from these preconditions. In particular, since
our sample is large enough, we can use the t-test without
problems. To be sure, we also performed a Wilcoxon/Mann-
Whitney test (a non-parametric test indicated as replacement
for the t-test when the samples are not normally distributed)
that provided similar results.

With respect to the choice of data sample, by considering
only one application domain and only projects written in C we
do not address the wide diversity of free software projects.

10http://rkward.sourceforge.net/

TABLE II
DESCRIPTIVESTATISTICS OF THE VARIABLES TESTED

Variable Mean Std. Dev. Min. Max. n
∆SCcore 0.001660474 0.3334254 -5.967357 5.355073 1994
∆SCperiphery 0.03426117 0.2970714 -2.023467 3.021991 519
|∆SCcore| 0.1291047 0.3092991 5.939609e-05 5.967357 939
|∆SCperiphery| 0.09200304 0.1891808 0.002171662 2.023467 226

In order to have results that can be properly generalized,
we need to study a more diverse population. It may be the
case that the communities working on different application
domains or different programming languages have different
design and programming practices, and that could affect the
obtained results.

From a construction validity point of view, by having a
single independent variable (the level of involvement of the
developer) we are not considering other factors that influence
the addition of structural complexity to the source code on
those projects.

A limitation caused by our choice to use only the version
control metadata directly provided by the repositories in
structured form is that we may be masking the reality by
considering the commit author as being the same developer
who actually developed the change. In several projects there
is a limited set of developers, known ascommitters, who have
write access to the repositories. This way, contributions from
developers who are not committers need to be reviewed and
applied by a committer, and the version control repository
stores the committer name as the author of the change. In
those cases the committer usually gives credit to the original
author of the change in free-form text inside the commit log
message, but we did not consider this in the data extraction.On
the other hand, in such cases the committer explicitly decided
to approve a change proposed by another developer and to
apply that change to the source code; one can also argue that
by doing that the committer took part in a design decision
that affects the structural complexity of the project, evennot
having written the code herself.

We did not analyse the nature of the changes that reduce
structural complexity, so we cannot claim that they are similar.
Complexity-reducing changes may actually represent correc-
tive, adaptive, perfective and preventive maintenance activities.
Those changes can also be localized in few software modules,
or systemic changes that touch a large number of modules.
They can be defect corrections, or implementation of new
features. For example, a change that adds a new module will
usually make the structural complexity metric drop: since we
used the average structural complexity per module, adding a
new module that is not as complex as the current average
will make the average value fall down. In such case, however,
adding a new module that is not as complex as the average
may be considered a good thing, since we are adding new
functionality to the software without making the part that
implements that functionality as complex as the rest of the
system. The bottom line is that the differences in structural
complexity reduction may actually be caused by the type

of maintenance being performed while core and periphery
developers happen to perform different types of maintenance.

We also excluded from the analysis changes that do not
change the structural complexity metric (i.e. those in which
∆SC = 0). These changes may also reveal interesting design
activities, such as removing a dependency from moduleA to
moduleB and makingA depend onC instead. While this will
not changeA’s coupling, being able to analyse changes like
this one may provide relevant information about the project’s
design activity. By not considering this type of change we are
probably ignoring events that may influence the others that
actually change the structural complexity metric.

VII. R ELATED WORK

Capraet al [24] claim that free software projects with a
more open governance structure exhibit a better design quality.
From one side, a higher design quality enables a more open
governance: less coupled modules allow different developers
to work on their own parts of the project without explicit
coordination activities. Having a more open governance gives
developers more freedom to enhance the design quality instead
of having to keep up with deadlines or another types of
pressures from higher management or customers.

Bargalloet al found that project popularity11 may be asso-
ciated with a lower design quality. They argue that as a project
becomes more popular, their lead developers may redirect their
efforts from programming to other activities such as answering
users in forums or mailing lists, reviewing contributions etc.
Such projects, having their main (and more experienced) de-
velopers change their attention to non-programming activities,
may suffer from a decrease in design quality[29].

These works try to find factors that influence what they call
“good design” in free software projects, in terms of different
sets of object-oriented metrics from the suites by Chidamber
amd Kemerer [10] and Brito e Abreu [11]. Our work differs
from the above by i) considering the structural complexity
construct, which is based on concepts applicable to both OO
and non-OO software (coupling and cohesion) and ii) studying
developers’ attributes as factors (as opposed to looking at
organizational and project-wide aspects).

VIII. C ONCLUSIONS

In this paper we have investigated the relationship between
the different levels of developer involvement in free software
projects and the amount of structural complexity added by
changes recorded in version control systems. We thus provide

11measured as a function of the number of downloads, web trafficand
development activity

relevant results on the technical side of the core/periphery
dichotomy: core and periphery do not only behave differently
[21], [22] and contribute different amounts of effort [3], [2],
but they also provide code of different complexity.

The data obtained supports both our hypothesis: the core
developers are able to make changes to the source code without
introducing as much structural complexity as the peripheral
developers; and they also remove more structural complexity
than the other developers. Finding empirical evidence for such
hypotheses highlights the importance of a healthy core team
for a free software project: in a certain sense, the core teamis
responsible for keeping the project’s conceptual integrity, as
suggested by Brooks [30].

It is important to note, however, that these results cannot
be taken as an incentive to not accept contributions from
non-core developers. Not all projects are able to keep the
same core team during its entire lifespan [18], so receiving
new contributors is fundamentally important for the project’s
sustainability. In several projects, non-core developersare
responsible for a healthy ecosystem of extensions, pluginsand
other types of add-ons that can be used together with the main
product. The source code for these add-ons sometimes does
not even reside in the main project repository, and sometimes
the changes they propose to the core product are needed
to enable an entire new line of possibilities for extension
developers.

Attracting as much contributors as possible is important to
have a thriving free software project. Project leaders willmost
likely not want to send their contributors away even if their
contributions are not perfect. The results presented here can
be seen as a opportunity for project leaders to qualify their
contributors: since non-core developers tend to produce more
complex code, it is perhaps a good idea to explicit review their
code. If code review practices are adopted, core developers
can work together with non-core developers looking for less
complex solutions. This code review activity can even leverage
documented guidelines of good design practices for the project
contributors.

The work reported in this paper is part of a larger research
project, in which we investigate how developer characteristics
influence the variation of structural complexity in free software
projects. Considering the developer’s level of participation is
just the first step towards a more comprehensive understanding
of the phenomenon. That said, in the following paragraphs we
outline directions that may be taken for future work.

We plan to test other developer attributes in order to build
a more comprehensive model of how the developers influence
the variation of structural complexity in these projects. Such
attributes can be divided in two groups: i) attributes related to
the developers themselves, such as skill level, programming
ability, experience in general; ii) attributes related to the
participation of the developer in the project, such as levelof
participation (already explored in this paper), experience in
the project, experience with the modules being changed, and
whether the developer is a specialist or not in the area he/she is
working on (with regard to its own past activity in the project).

Another alternative is testing the same hypotheses tested
in this study on each project individually. This may provide
us with stronger results for specific projects, and for other
projects their data may not support the hypotheses at all.
If that is the case, doing a richer characterization of the
projects would support us on identifying other factors that
enable or prevent the results achieved in this study. We can
also investigate other factors that may impact the introduction
of structural complexity in the source code by constructinga
richer characterization of the changes themselves.

Extending our dataset to include projects from other applica-
tion domains and written in different programming languages
will also help us generalize the results to a wider range of free
software projects.

The information stored in the version control repositories
can also be explored better. There is a lot of possibilities for
analysing the combination of the metadata from the version
control systemand information about the actual changes in the
structure of the source code (as opposed to mere information
on lines added/removed).

It is also unclear, and worth investigating, how the devel-
oper’s design ability advances as the developer advances in
the community. It would be interesting to learn how individual
developers evolve in terms of complexity added to the source
code as a developer moves from the periphery to the core, or
the other way around.

ACKNOWLEDGMENTS

The authors are thankful for the insightful contributions
from Dr. Daniela Cruzes from the Norwegian University
of Science and Technology12 and from their colleagues at
the Software Engineering Lab (LES) at Federal University
of Bahia13, in special Dr. Manoel Mendonça. Antonio Ter-
ceiro is supported by the Brazilian National Council of Re-
search and Development (CNPq)14. Luiz Romário is sup-
ported by Fundaç̃ao de Amparoà Pesquisa do Estado da
Bahia (FAPESB)15. This work was partially supported by the
National Institute of Science and Technology for Software
Engineering (INES)16, funded by CNPq, grant 573964/2008-4.

We are also grateful to the anonymous reviewers for their
comments and contributions. All of their remarks that could
not be addressed in this paper will certainly be taken into
account in future studies.

REFERENCES

[1] D. L. Parnas, “Software aging,” inICSE ’94: Proceedings of the 16th
international conference on Software engineering. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1994, pp. 279–287.

[2] K. Crowston and J. Howison, “The Social Structure of Freeand Open
Source Software Development,”First Monday, vol. 10, no. 2, 2005.

[3] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,”ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

12http://www.idi.ntnu.no/
13http://les.dcc.ufba.br/
14http://www.cnpq.br/
15http://www.fapesb.ba.gov.br/
16http://www.ines.org.br/

[4] Free Software Foundation, “The Free Software Definition,” 2009, Avail-
able at http://www.gnu.org/philosophy/free-sw.html, last accessed on
January 1st, 2010.

[5] The Lua Programming Language, “Frequently Asked Questions,” 2009,
Available at http://www.lua.org/faq.html#1.8, last access on January 5th,
2010.

[6] T. Østerlie and L. Jaccheri, “A Critical Review of Software Engineering
Research on Open Source Software Development,” inProceedings of
the 2nd AIS SIGSAND European Symposium on Systems Analysis and
Design, W. Stanislaw, Ed. Gdansk University Press, 2007, pp. 12–20.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.Little,
R. Nord, and J. Stafford,Documenting Software Architecture : Views
and Beyond, ser. The SEI series in software engineering. Boston:
Addison-Wesley, 2002.

[8] L. Bass, P. Clements, and R. Kazman,Software Architecture in Practice.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2003.

[9] D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko,
“The Structural Complexity of Software: An Experimental Test,” IEEE
Transactions on Software Engineering, vol. 31, no. 11, pp. 982–995,
Nov. 2005.

[10] S. Chidamber and C. Kemerer, “A metrics Suite for ObjectOriented
Design,” IEEE Trans. Sftware Eng., vol. 20, no. 8, pp. 476–493, 1994.

[11] F. B. e Abreu, “The MOOD Metrics Set,” inProc. ECOOP Workshop
Metrics, 1995.

[12] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-
oriented systems,” inProceedings of the International. Symposium on
Applied Corporate Computing, 1995.

[13] V. Midha, “Does Complexity Matter? The Impact of Changein Struc-
tural Complexity on Software Maintenance and New Developers’ Con-
tributions in Open Source Software,” inICIS 2008 Proceedings, 2008.

[14] K. J. Stewart, D. P. Darcy, and S. L. Daniel, “Opportunities and
Challenges Applying Functional Data Analysis to the Study of Open
Source Software Evolution,”Statistical Science, vol. 21, p. 167, 2006.

[15] A. Terceiro and C. Chavez, “Structural Complexity Evolution in Free
Software Projects: A Case Study,” inQACOS-OSSPL 2009: Proceedings
of the Joint Workshop on Quality and Architectural Concernsin Open
Source Software (QACOS) and Open Source Software and Product Lines
(OSSPL), M. Ali Babar, B. Lundell, and F. van der Linden, Eds., 2009.

[16] M. M. Lehman, J. F. Ramil, P. D. Wernick, and D. E. Perry, “Metrics
and Laws of Software Evolution-The Nineties View,” inProceedings of
the 4th International Symposium on Software Metrics, 1997. [Online].
Available: {citeseer.ist.psu.edu/lehman97metrics.html}

[17] C. Jensen and W. Scacchi, “Role Migration and Advancement Processes
in OSSD Projects: A Comparative Case Study,” inICSE ’07: Pro-
ceedings of the 29th international conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 364–374.

[18] G. Robles and J. Gonzalez-Barahona, “Contributor Turnover in Libre
Software Projects,”Open Source Systems, pp. 273–286, 2006. [Online].
Available: {http://dx.doi.org/10.1007/0-387-34226-528}

[19] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution of
the core team of developers in libre software projects,” inMining
Software Repositories, 2009. MSR ’09. 6th IEEE International Working
Conference on, May 2009, pp. 167–170.

[20] J.-M. Dalle, M. d. Besten, and H. Masmoudi, “ChannelingFirefox
Developers: Mom and Dad Aren’t Happy,” inOpen Source Develop-
ment, Communities and Quality, IFIP 20th World Computer Congress,
Working Group 2.3 on Open Source Software, OSS 2008, September 7-
10, 2008, Milano, Italy, B. Russo, E. Damiani, S. A. Hissam, B. Lundell,
and G. Succi, Eds., vol. 275. Springer, 2008, pp. 265–271.

[21] H. Masmoudi, M. d. Besten, C. d. Loupy, and J.-M. Dalle, ““Peeling the
Onion”: The Words and Actions that Distinguish Core from Periphery
in Bug Reports and How Core and Periphery Interact Together.” in
OSS: Diverse Communities Interacting, 5th IFIP WG 2.13 International
Conference on Open Source Systems, OSS 2009, Skövde, Sweden, June
3-6, 2009. Proceedings, C. Boldyreff, K. Crowston, B. Lundell, and A. I.
Wasserman, Eds., vol. 299. Springer, 2009, pp. 284–297.

[22] M. J. Scialdone, N. Li, R. Heckman, and K. Crowston, “Group Mainte-
nance Behaviors of Core and Peripherial Members of Free/Libre Open
Source Software Teams,” inOSS: Diverse Communities Interacting,
5th IFIP WG 2.13 International Conference on Open Source Systems,
OSS 2009, Skövde, Sweden, June 3-6, 2009. Proceedings, C. Boldyreff,
K. Crowston, B. Lundell, and A. I. Wasserman, Eds., vol. 299.Springer,
2009, pp. 298–309.

[23] A. Capiluppi and M. Michlmayr, “From the Cathedral to the Bazaar: An
Empirical Study of the Lifecycle of Volunteer Community Projects,”
in Open Source Development, Adoption and Innovation, J. Feller,
B. Fitzgerald, W. Scacchi, and A. Silitti, Eds. Springer, 2007, pp.
31–44.

[24] E. Capra, C. Francalanci, and F. Merlo, “An Empirical Study on the
Relationship Between Software Design Quality, Development Effort and
Governance in Open Source Projects,”IEEE Transactions on Software
Engineering, vol. 34, no. 6, pp. 765–782, Nov.-Dec. 2008.

[25] K.-J. Stol and M. A. Babar, “Reporting Empirical Research in Open
Source Software: The State of Practice,” inOSS: Diverse Communities
Interacting, 5th IFIP WG 2.13 International Conference on Open Source
Systems, OSS 2009, Skövde, Sweden, June 3-6, 2009. Proceedings,
C. Boldyreff, K. Crowston, B. Lundell, and A. I. Wasserman, Eds., vol.
299. Springer, 2009, pp. 156–169.

[26] V. Basili, G. Caldiera, and D. H. Rombach, “The Goal Question Metric
Approach,” inEncyclopedia of Software Engineering, J. Marciniak, Ed.
Wiley, 1994.

[27] R Development Core Team,R: A Language and Environment for
Statistical Computing, Vienna, Austria, 2009, ISBN 3-900051-07-0.
[Online]. Available:{http://www.R-project.org}

[28] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and
A. Wesslén,Experimentation in Software Engineering: an Introduction.
Kluver Academic Publishers, 2000.

[29] D. Barbagallo, C. Francalenei, and F. Merlo, “The Impact of Social
Networking on Software Design Quality and Development Effort in
Open Source Projects,” inICIS 2008 Proceedings, 2008. [Online].
Available: {http://aisel.aisnet.org/icis2008/201}

[30] F. P. Brooks.Jr,The Mythical Man Month: Essays on Software Engi-
neering. Addison-Wesley , April 1995, ch. “Aristocracy, Democracy,
and System Design”.

