An Empirical Study on the Structural Complexity
Introduced by Core and Peripheral Developers in
Free Software Projects

Antonio Terceiro, Luiz Romario Rios, Christina Chavez
Software Engineering Lab (LES)
Computer Science Department
Federal University of Bahia
{terceiro, luizromario,flach}@lcc. ufba. br

Abstract—Background: Several factors may impact the older software requires more effort for being updated ag tim
process of software maintenance and evolution of free sofawe passes, bug fixes tend to cause new bugs, and can even exhibit
projects, including structural complexity and lack of control unsatisfactory performance

over its contributors. Structural complexity, an architectural . .
concern, makes software projects more difficult to understad, The aging phenomenon can be also observed in the context
and consequently more difficult to maintain and evolve. The Of free softwaré projects. For instance, GNOME is a world-
contributors in a free software project exhibit different | evels of wide project that provides the GNOME desktop environment,
participation in the project, and can be categorized as cor@nd g desktop system, and the GNOME development platform,
peripheral develapers. a framework for building applications that integrate into
Research aim: This research aims at characterising the the rest of the deSkt_Op' GNQME had two of 'tslcompo'
changes made to the source code of 7 web server projectsnents,eog, GNOME's image viewer angnone- sessi on,
written in C with respect to the amount of structural complexity GNOME's session management software, completely rewritte
added or removed and the developer level of participation. from scratch?

i . S In older projects, the code base becomes so difficult to
Method: We performed a observational study with historical S . _ . - .
data collected from the version control repositories of thse maln_taln that their maintainers deC|_de t_h‘fﬂ re_zwrltlng thmlh
projects, recording structural complexity information for each require less effort than to keep maintaining it. Sometinhes t
change as well as identifying each change as performed by adevelopers believe that rewriting their project (or largetp
core or a peripheral developer. of it) is absolutely necessary for them to be able to evolve

. the project. Less complex code may facilitate the additibn o
Results and conclusions: We have found that core developers feat d bua fixing i tainabl d theref
introduce less structural complexity than peripheral devdopers new teatures and bug fixing In a sustainable way an eretore

in general, and that in the case of complexity-reducing act- SUPPOrts maintainability.
ities, core developers remove more structural complexity Han These rewrites take time and effort, so every project leader

peripheral developers. These results demonstrate the impance \would certainly prefer not to deal with them. If the factanat
of having a stable and healthy core team to the sustainabiltof ...+ te to added complexity in free software projects ca
free software projects. -
be identified and characterized, project leaders wouldiplyss
be able to avoid such rewrites.
S ~ Several factors may impact the process of software main-
The problem of software aging, introduced by Parnas {anance and evolution. The internal quality of the software
1994, is a well-known problem in the Software Engineeringyat is to be evolved and maintained is one of the most
field [1]. It has two causes: the first is “lack of movementymportant: the lower the quality of the source code and other
when a software project fails to deliver an updated produgititacts, the larger is the effort to change them. In thistext,
of software aging is “ignorant surgery”: the software is suljimensions of the internal quality.
sequently changed by people who do not fully understand itspne of the characteristics of free software projects is the
design, and after some time even the creators of the desjggx of control over the project developers. They usuallg jo
do not understand it anymore; changing the software becomes
harder and more error prone. lin our work, “free software” is used as a synonym for “open reeu
According to Parnas, software aging is inevitable, just liksoftware” (OSS), ‘freefopen source software” (FOSS) ameeflibre/open

human aging. While there are measures that can be taRyfce software’(FLOSS). o o _
These rewrites were described in their wiki pages, respagti

to §|OW dO_Wn the effects of software aging, even Succes_snﬁlp://Iive.gnome.org/EyeOfGnome/EogNg and http@lgnome.org/
projects will get old and suffer the consequences of aginggssionManagement/NewGnomeSession.

I. INTRODUCTION

and leave projects based on their motivation or needs, aheé software is released, end users will have access to the ne
present differentlevels of participation The convention is functionalities of bug fixes proposed by these contributors
to categorize them as eitheore developersor peripheral In the course of time, the most frequent contributors gain
developersThe former are the most active developers, whibie trust from the initial developer(s), and can receivedir
perform most of the work, and are in general in charge of therite access to the official source code of the project. That
important decisions regarding the project. The later conte way they will be able to make changes directly instead of
less often, and normally have little decision power in thieaving to pass through the review of the original develapers
project [2], [3]. This process of developers joining free software projeciy m

In this paper, we explore the different levels of developerange from very informal to very formal, depending on the
participation as a factor that may influence the amount pfoject. Small projects normally have informal procedues
structural complexity in free software projects. We want tthat, e.g. one existing developer just offers an accounién t
verify whether core and peripheral developers introdude diversion control system to the new contributor. Larger poigje
ferent amounts of structural complexity in the code, and alen the other hand, may have more “bureaucratic” processes
whether they remove different amounts of complexity durinfipr accepting a new developer with privileged access to the
activities that reduce the complexity of the source codehsuproject’s resources, such as filling forms with an applarati
as refactorings. signing terms of copyright transference and other procelur

The remainder of this paper is organized as follows: sectionThe development is normally driven with the help of a
Il presents the background for this study; section Ill pnése version control system (VCS), where the latest version ef th
the hypotheses that we investigate in this paper; section $gurce code is stored in a source code repository. The VCS
describes our research design; in section V we analyse tReords every change ever made to the source code, as well
results obtained; section VI discusses threats to theitsalii as the author and date of the changes. While the repository
this study; section VIl discusses similar studies and caosmpais often publicly available for read access, write access is
our study with them; finally, in section VIII we discuss ourrestricted to a limited group of developers. Other devaispe

results as well as possibilities of future work. will need their changegpétche}to be reviewed by a developer
with the needed privileges in order to get their contribogio
Il. BACKGROUND into the project’s official repository. This process is slitated

The following sections present background in the main supy figure 1.
jects addressed by this paper: free software projectstatal

complexity of software and the concept of Core and Periphery
as different levels of contribution in free software pragec
A. Free Software . repository reptository
: write
We call “free software” every software product that is write B
available to its users under a license that allows it to be \

freely® studied, modified, and redistributed, according to the

“Free Software Definition” [4], published by the Free Soft&/a patch patch
Foundation. Project

The most interesting aspect of the nature of free software, Repository
from a Software Engineering point of view, is its developinen \
process. A free software project starts when an individual . . T repositoryB
developer, or an organization, decides to make a software repository write

publicly available on the internet so that it can be freelgd)s write
modified and distributed. After an initial version is releds

and with some effort in advertising it in the appropriate

channels, independent users start using it, and thosewkers

are also software developers are able to inspect the s@fvar rig. 1. Free software development by means of a VCS repgsitor
source code and propose changes to it. These changes are sent

back to the original developer(s) in the form pditche$. The
project leader(s) review this change proposals and apply (0
not) them to their own version, so that when a new version

There are variants of this process. For example, recently
e usage of distributed version control became quite @opul
With distributed VCS, there is no need for a central repogito
3ps free software advocates are used to remind, the “free# fetfree” Each developer has its own repository, which may be puhi_lshe
as in “freedom”, not as in “free lunch” (“gratis”). for other to access. But the concept of an official reposijtory
4A patch is a file that describes the changes to one or more ricemally blessed by the project leaders. still exist.
of textual content, by describing which lines to remove atictv lines to add. . S .
The following characteristics make free software projects

After receiving a patch the developer can reproduce thegawaproposed by .)
the sender in his/her own copy of the source code. different enough from “conventional” software projectsda

also makes them an interesting object of study: more effort for maintenance activities [9]. Moreover, they-

« Source code availability. Source code of free softwareified that ne.ither coupling nor lack of cohes@on by themselve
projects is always available on the internet. AIthougﬁOUld explain the decrease in gomprehensmn performgnce of
most of the projects have a publicly-accessible versidfi¢ developers; only when considered together (by multigly
control repository, there are projects that do not have offé® two) they presented an association with higher mainiena
(e.g. the Lua Programming language [5]). effort. The authors cla|m. that Whgn con3|derlng structural

« User/developer symbiosisin most free software projects COmPplexity, one must consider coupling and cohesion tageth
the developers are also users of the software, and theyn this work, we follow Darcyet aland consider both cou-
also provide requirements. Maybe because of that, seve?i’g and cohesion in our definition of structural complgxit
free software projects do not have explicit requiremeN¥e provide, however, a formal definition of this metric, as
documents, and the development flows on a rhythm fallows. _ o _
which the developers are able to satisfy their own needs.The structural complexity of a module is given by multiply-

« Non-contractual work. A large amount of work in free INg coupling (Chidamber and Kemerer's CBO [10]) and lack
software projects is done in a non-contractual fashiofif cohesion (Hitz and Montazeri's LCOM4 [12]) metrics. A
This does not imply that the developers are necessamjPiect-wide value for structural complexity can be obéain
volunteers, but only that there is no central managemdi¥t taking the average structural complexity among all mod-

with control over all of the developers’ activities. ules. GivenM (p), the set of modules in a projept we have:
« Work is self-assigned.Since most free software projects Z CBO(m) x LCOMA4(m)

don’t have a central central management with control over

the contributors’ activities, the work of these contrilnsto SC(p) = mEM(P)

is normally self-assigned: volunteer developers work on M (p)]

the parts of the project that most appeal to them. C. Structural Complexity in free software projects

« Geographical Distribution. In most Free Software \Midha [13] studied projects from sourceforge.net and ver-
projects the developers are spread among several differgigly that increases in complexity leads to increase in the
locations in the world. In the projects with high geographyumber of bugs in the source code, decrease in contributions
ical dispersion, almost all communication is performegiom new developers and increase in the time taken to fix bugs.
through electronic means. Although using a different concept of structural complexit

Although the Software Engineering literature tends to poby considering MacCabe’s Cyclomatic Complexity and Hal-

trait Free Software as a homogeneous phenomenon[6], mossiefad's Effor}, these results demonstrate that complexity has
these characteristics do not apply to all free softwaregotsj nasty effects on Free Software projects. We speculate that a
and some of them may be manifest in different ways acroiserease in structural complexity as defined in this study he

projects. has similar effects in free software projects, as it did ia th
controlled experiment by Darogt al [9].
B. Structural complexity Stewartet al studied 59 projects written in Java that were

Structural complexity is an architectural concern: it iives available on Sourceforge [14], using the product of coyplin

both the internal organization of software modules, as wél d lack of cohesion as their structural complexity measure
as how these modules relate to each other [7], [8]. structurd'€Y _ver|f|ed 4_ different patterns Of. structura_l complexity
complexity influences the developer’s time: a more compl oluthn, of which 2 presented growing tr_eno_l in the end of
software is expected to require more effort from develop@rst e period. The other 2 presented stabilization in the erideof
be comprehended in maintenance activities [9] period: none of the identified patterns featured a complexit
Several aspects of Software Design can be considered Wﬁ%%uctlon trend. A previous study of ours also indicated a

evaluating structural complexity. We can consider, amo%ﬁowmgtrend in structural complexity on another (but daral

others, coupling [10], [11], cohesion [10], and inheritaft0], oject wr_|tten in € [1.5]' .
[11]. Increasing complexity trends are not an exclusive featfire o

L : . - , , free software projects, and are not recent news: the seminal
While inheritance is specific to the object-oriente : : .
aradiam. counling and cohesion are more generally a vl\llork of Lehman on software evolution already identified it,

P am, ping : ; 9 Y 8PPIAd that led to the formulation of the second law of software
cable. Every programming paradigm has a notionmafdule . . .
. P o - o a evolution the Law of Increasing Complexity [16]. That law,
whether it is called “module”, “class”, “aspect”, “absttatata : . .
formulated in the context of studies on proprietary softwvar

type”, “source file”, etc. Having modules, one can always) R
. . . stems, states that as systems evolve, their complexity in
analyse a program and identify which other modules a modu : o !
reases unless work is done to maintain or reduce it.

refers to and thus have a notion of coupling, and also veri
how the subparts of a given module interact with each othefThese two measures represent respectively the internaplegity of

to evaluate the cohesion of such a module. subroutines and the overall vocabulary size of the code. basey reflect a
| . | . ith f . | softw i different aspect of structural complexity, at the subnoaitievel. Here we are
n an experimental setting with professional software eVQooking at structural complexity at the design/architeetlevel, considering

opers, Darcyet al found that more complex software requireshe relationship between modules and between the sub<qfaesch module.

For now, we know that i) software complexity is associatecbre and periphery members also exhibit different behaviou
with undesirable effects (more maintenance effort, mogshu while debating subjects related to the project [22] or in the
less attraction of new developers) and ii) structural caxipf bug reporting activity [21].
tends to not decrease, and in a reasonably large amount of

cases, it tends to grow. That leads us to the following qoesti Ill. RESEARCH HYPOTHESES
why does structural complexity increase in the context @eFr As discussed earlier, structural complexity raises thenmai
Software projects? tenance cost of a software project, because the code becomes

In this paper we investigate whether developer attribud®s charder to understand, and in consequence harder to madlify. |
explain the variation in structural complexity in free sedre free software projects, such an increase in effort may sgmie
projects, specifically whether core and periphery develpen extra difficulty for gathering new contributors. Failibg
contribute differently to such variation. The concept ofeco attract contributors represents a threat to the projedaisus
and periphery an important aspect in the study of the fregility [23], specially those which are not mainly funded &y
software development process, and is described in the ngiigle organization and rely on the contributions of vohans.
section. There are differences between core and peripheral contrib-
utors with respect to the volume of work done and behaviour
in communication inside the project. This begs the quest®on

Normally, a Free Software project is started by a singiethe quality of their contributions could be also diffetee
developer, or by a group of developers, in need of addressiggnt to evaluate the amount of complexity that they intreduc
a particular need. After there is a usable version, it isas#€ jnto the code. Since core developers have deeper knowledge
to the public under a Free Software license which allowst the software architecture, it is expected that their gjesn
anyone to use, change and distribute a copy of that softwagg the source code do not add as much structural complexity
As new users get interested in the project, some of theqg the changes made by peripheral developers do. Thus the
may start to contribute to it in several possible ways: witfyst hypothesis we want to test in this paper is the following
code for new features or bug fixes, with translations intarthe H,: changes made by core developers introduce less

”a“V‘? Iapguages, with d_ocumentatlon, or with other _ty_p‘es % structural complexity than those made by periphery
contribution. At some point, then, the project has a vivid an developers

active community: a group of people that gravitate around a ,)
project, with varied levels of involvement and contributio Several projects also undertake development e_ffort inrorde
The “onion model” [2], [3] became a widely acceptedo refactor the code and thu; rfeduce complexny [24]. As
representation of what happens in a Free Software projgct,fﬁrmmaf[ed by Iaehman [16_]’ tEIIS ';5 neled;ad n olrde_r to kﬁ_(lep
indicating the existence of concentric levels of contiiuta . ehprOJect ug er _ahsustzzllna Ie evel of complexity. W Ieh
small group of core developers do the largest part of the woOt kcore ar; plerlp ery evel;)p;rs can partmlp&}tel |n.suhc
a larger group makes direct, but less frequent contribstion & task, core developers are probably more successiul ant t
VBRriphery developers, and we want to verify that empircall

the form of bug fixes, patches, documentation, etc; an e o 4
larger group reports problems as they use the software, SR second hypothesis is then related to the reduction of

the largest group is formed by the silent users who only uSEUctural complexity in the source code:
the software but never provide any type of feedback. H,: among the changes that reduce structural com-

The processes by which participants migrate from one group Plexity, the ones made by core developers achieve
to another are very different from one community to the ather ~ greater structural complexity reduction than those
communities may adopt more formal and explicit procedures made by periphery developers
for that, or use a more relaxed approach and let things flow
“naturally”. But in general the achievement of central mle
(and thus more responsibility, respect and decision power)in order to test our hypotheses, we designed and executed
are merit-based: a developer becomes a leader by meansirofempirical study, which is described in this section. Care
continuous valuable contributions to the community [17]. was taken in order to provide all information needed by the

Since most of the work is done by a core team, it ieader to assess the quality of the study and the appliabili
important for projects to keep a healthy and active core teanf its results [25].

Some projects are able to keep its core team with few or noThe research method used was abservational study
changes across its entire history, while others experienceén which a phenomenon is observed in its natural setting
succession of different generations of core developer§ [18as opposed to a controlled lab environment, used in a true
[19]. experiment).

The relationship between core contributors and peripheralOur data collection approach was to mine the version
(non-core) members of a community are not always smoottontrol systems of a selected group of free software project
sometimes the core tends to work on their own demands andriam the web server application domain, and to collect data
give little attention or even to ignore completely the dedwn from each change to the project source code. For each change,
of the periphery [20], [21]. From an individual point of view we registered the date of the change, the variation of stralct

D. Core and Periphery in free software Projects

IV. RESEARCHDESIGN

GOAL

QUESTIONS

METRICS

Characterize changes made by
core and peripheral developers
in free software projects

Do core developers introduce
less structural complexity than
peripheral developers? (H1)

Developer level of
participation - L

D devel Structural complexity
o core developers remove variation - ASC

more structural complexity than
peripheral developers? (H2)
Absolute structural complexity

variation - |ASC]|

Fig. 2. GQM diagram of the study

complexity accomplished by the change, and whether thee Dependent variables

change was made by a core or a peripheral developer. — SC, the overall structural complexity of the project
The study definition, using a GQM template [26] is as after each change, as described in section II-B.
follows: In this study weanalysechanges made to the source — ASC, the increment in structural complexity in each
code of free software projectsr the purpose of of characteri- change. For each change, this value is obtained by
zationwith respect to structural complexity added or removed subtracting itsSC' value from the previous change’s
and level of developer participatiofrom the perspective of SC value. This variable represents how much the
the researchein the context of the web server application structural complexity changed after a given change
domain. was applied to the project source code.
Figure 2 presents a GQM diagram of the study. In such _ |AS(C], the absolute change in structural complexity
diagram, the first column, “Goals”, identifies the problems (i.e. the absolute value akSC).
that a given study is trying to solve. “Questions” identifies
the questions that, when answered, will provide a solutid Sample and data collection

to the problems, and “Metrics” identifies which metrics (or We started by identifying all web server packages in the
“variables”) need to be measured so that we achieve answggg,ian GNU/Linux archive. This decision was made in order
to the related questions. Arrows connect goals and thgigeject projects that were being actually used: if a webeser
asso_mated guestions, as well as questions and_ the”_amc'software is properly packaged and maintained in Debian, it
metrics. In the case of the current study, there is a sing# 94heans that there is interest in it to the point that someohe vo
with two questions. Our questions are directly mapped t0 iGeers to maintain an automatic installation package ab th
research hypotheses presented in section lll. ;5015 can install it without the need for manual configurétio
The metrics associated to each research question in figurgq orovided us 21 web server projects as a starting point.
2 are presented in section IV-A. Our data collection apft0ag;, e e needed to harvest the version control history of the
and the obtained sample are described in section IV-B. .0 t5in order to characterize the changes made to theesou
code, we needed that the projects have an accessible version
)))) control repository. Due to a temporary limitation in our lin
The following variables are considered in the study: ¢, sourcg codeyanalysis, we hpad tg stick to projects vgritten
« Independent variable in the C language. Since C is a language commonly used
— L, the level of involvement of the author of the giverfor infrastructure software, most of the web servers idieuti
change in the project at that point in time. This isre written with it. After applying both restrictions, weud
determined by splitting the entire studied period ifdentify 7 projects to work with. They are listed in table I.
20 periods of equal duration, and for each period The source code repository of each project was imported
identifying the 20% top committers as the core teatocally in agi t 7 repository in order to facilitate fast and off-
(cf. [18], [19]). The reader should note that byine history browsing. We used a set of scripts developed by
according to this definition, the same developer cams to mine this repository as follows:

be considered as a core developer in some periods, petermine the list of relevant commits, by identifying
and a peripheral developer in other periods. This the commits that changed source code files. This way we
is coherent with reality: since developers often do

not have any formal responsibilities with with the 6aithough the first author of this paper is a Debian maintaimer is not
projects, they may reduce or increase their activiuyaintainer of any of the web server packages evaluated., Alsoe of the

. . . ie . -authors is affiliated with any of the studied projects.
in the project in SpeCIfIC.peI’IOdS, anc_i thus can ShIﬁj7http://git-scm.org/.gi t has support for importing repositories from CVS
from the core to the periphery and vice-versa. and Subversion.

A. Variables and operational definitions

TABLE |

PROJECTS SELECTED FOR ANALYSIS by developers considered as core developers, while the othe
519 (20.65%) were made by peripheral developers.
F’“I’Ject 25%’8/05 5889/05 ffzfgm'ts zDzeve'Opefs To test H;, we need to compardSC for the subset of
aolserver
apache 1999/06 2009/11 9663 72 changes made by core developers and the ones made by

cherokee 2005/03 2009/10 1545
fnord 2001/08 2007/11 99
lighttpd 2005/02 2009/10 775
monkeyd 2008/01 2009/06 207
weborf 2008/07 2009/10 139

periphery developerdd; can then be formalized as follows:

Hy : pASCoore < BASCperiphery

wWhoNO©

We used a t-test to verify the hypothesis, and were able to
reject the null hypothesis that there is no difference betwe
_) the means and accept the alternative hypothésis with
avoided analysmg subsequent states of the source c?)dg 0.05 (p = 0.01515265). This demonstrates that our hy-
that were no different from each other. _ pothesis thathanges made by core developers introduce less
o Checkout egch relgvant version and run a static SouIge,ctural complexity than those made by periphery deatop
code analysis tool in order to calculate the source Coﬁesupported by the data.
metrics used, namely CBO [10] and LCOM [10] (We g testf7,, we must consider only the cases in which there
used the improved version from Hitz and Montazeri [12}g 5 decrease in structural complexity. To do that, we fittere

though). _ . the dataset again and kept only the changes in whiSld' <
« Accumulate the results for each change in a single dajan ths filtered dataset we have 1165 changes, of which 939
file per project. (80.60%) were made by core developers and 226 (19.40%)

After processing all the projects, we loaded their raw datg/ periphery developers. We want then to verify whether the
in a relational database in order to facilitate the evatumtf amount of structural complexity removed by core developers
L, SC, ASC and|ASC|. During this process we excluded 7is greater than the amount removed by periphery developers,
commits that had no previous commit to compare to (i.e. thghat can be formalized as follows:
very first commit of each project).

Table | lists some aggregated information about the data Hy : pasaol,,,, > HIASC]periphery

sample. The “Start” and “End” columns show year and month The t-test forf, allowed us to reject the null hypothesis of
of the first and last changes considered, respectivelyydt@ ihe two variables being equal, and accept the alterndiive
tq the project’s version control system. The ‘.‘Commits.” ol \ith p < 0.05 (p = 0.01091324). The data support our second
displays the number of changes (commits) considered finothesis as wellamong the changes that reduce structural
each project, and the “Developers” column counts how magymplexity, the ones made by core developers achieve greate
different developers were responsible for these considergctural complexity reduction than those made by periphe
changes. _ ~ developers
The following tools were used to mine the repositories: Taple || presents descriptive statistics of the datased irse
o The static source code analysis was performed withese results.
anal i zo®, a multi-language source code analysis tool The data analysis was performed with the R system [27]
we have been working on. and RKWard, a frontend to 'R
« The history analysis of the version control repositories

was made by thanal i zo- et ri cs- hi st ory script VI. THREATS TO VALIDITY

from theanal i zo- uti | s packagé While carefully designed, this study has some limitations
« The analysis specific to this study was done by sontkat represent threats to its generalisability.
ad-hoc Ruby code. The careful reader will notice that although all variables

The complete package for this study, with data, local S(gri'ot@stet?i in section V are not norma!ly distributed (see table |
etc is available on the web at the following address: httf/e Still used the t-test for comparing them. The t-test ugual

noted by Wohlinet al [28], it is robust enough to support
V. DATA ANALYSIS AND RESULTS some deviation from these preconditions. In particularcei

The full dataset contained 13553 changes, of which 9984r sample is large enough, we can use the t-test without
(73.36%) were made by core developers, and 3609 (26.6396pblems. To be sure, we also performed a Wilcoxon/Mann-
by peripheral developers. In order to test our hypotheses, Whitney test (a non-parametric test indicated as replaneme
excluded from the analysis the changes that did not make day the t-test when the samples are not normally distriuted
changes to the structural complexity metfi¢’ (i.e. ASC = that provided similar results.

0). The remaining changes are similarly distributed betweenWith respect to the choice of data sample, by considering

the two groups: of 2513 changes, 1994 (79.35%) were ma@ly one application domain and only projects written in C we
do not address the wide diversity of free software projects.
8http://github.com/terceiro/analizo
http://github.com/terceiro/analizo-utils 1Onhttp://rkward.sourceforge.net/

TABLE Il
DESCRIPTIVESTATISTICS OF THE VARIABLES TESTED

Variable Mean Std. Dev. Min. Max. n

ASCeore 0.001660474 0.3334254 -5.967357 5.355073 1994
ASCperiphery ~ 0.03426117 0.2970714 -2.023467 3.021991 519
|[ASCeore| 0.1291047 0.3092991 5.939609e-05 5.967357 939

|ASCperiphery| 0.09200304 0.1891808 0.002171662 2.023467 226

In order to have results that can be properly generalizeaf, maintenance being performed while core and periphery
we need to study a more diverse population. It may be tkdevelopers happen to perform different types of maintemanc
case that the communities working on different application We also excluded from the analysis changes that do not
domains or different programming languages have differecttange the structural complexity metric (i.e. those in \Whic
design and programming practices, and that could affect theSC' = 0). These changes may also reveal interesting design
obtained results. activities, such as removing a dependency from module
From a construction validity point of view, by having amodule3 and makingA depend orC' instead. While this will
single independent variable (the level of involvement af thnot changed’s coupling, being able to analyse changes like
developer) we are not considering other factors that inflaenthis one may provide relevant information about the prégect
the addition of structural complexity to the source code dtesign activity. By not considering this type of change we ar
those projects. probably ignoring events that may influence the others that
A limitation caused by our choice to use only the versioactually change the structural complexity metric.
control metadata directly provided by the repositories in
structured form is that we may be masking the reality by) _)
considering the commit author as being the same developef-@Praet al [24] claim that free software projects with a
who actually developed the change. In several projectsthéfOre open governance structure exhibit a better desigrtgual
is a limited set of developers, known esmmitterswho have From one side, a higher design quality enables a more open
write access to the repositories. This way, contributionsnf governance: less coupled modules allow different devetope
developers who are not committers need to be reviewed dRdWork on their own parts of the project without explicit
applied by a committer, and the version control repositoﬁpord'”at'on activities. Having a more open governancegiv
stores the committer name as the author of the change.dfgvelopers more freedom to enhance the design qualityeste
those cases the committer usually gives credit to the aigirPf having to keep up with deadlines or another types of
author of the change in free-form text inside the commit logréssures from higher management or customers.
message, but we did not consider this in the data extragion. _Bargalloet al found that project popularity may be asso-
the other hand, in such cases the committer explicitly aetidciated with a lower design quality. They argue that as a ptoje
to approve a change proposed by another developer and®&0mes more popular, their lead developers may redireict th
apply that change to the source code; one can also argue figrts from programming to other activities such as ansvger
by doing that the committer took part in a design decisid#Se€rs in forums or mailing lists, reviewing contributiorts.e

that affects the structural complexity of the project, even Such projects, having their main (and more experienced) de-
having written the code herself. velopers change their attention to non-programming dieisyi

We did not analyse the nature of the changes that redBgy suffer from a decrease in design quality[29].
structural complexity, so we cannot claim that they are lsimi These works try to find factors that influence what they call

Complexity-reducing changes may actually represent corred00d design” in free software projects, in terms of difiere
tive, adaptive, perfective and preventive maintenandeities. sets of object-oriented me_trlcs from the suites by Ch|d_a'mbe
Those changes can also be localized in few software modu@81d Kemerer [10] and Brito e Abreu [11]. Our work differs
or systemic changes that touch a large number of modulf@M the above by i) considering the structural complexity
They can be defect corrections, or implementation of negPnstruct, which is based on concepts applicable to both OO
features. For example, a change that adds a new module @it non-QO software (coupling and cohesion) and i) stuglyin
usually make the structural complexity metric drop: sinae wf€velopers’ attributes as factors (as opposed to looking at
used the average structural complexity per module, addin@@2nizational and project-wide aspects).

new module that is not as complex as the current average VIIl. CONCLUSIONS

will make the average value fall down. In such case, however,
9 én this paper we have investigated the relationship between

adding a new module that is not as complex as the averlﬂe different levels of developer involvement in free saitev
may be considered a good thing, since we are adding new P

functionality to the software without making the part tha‘?rojeCtS and the amount of structural complexity added by

implements that functionality as complex as the rest of thcganges recorded in version control systems. We thus provid

system. The bottom line is that the differences in struéturaiigasured as a function of the number of downloads, web trafii
complexity reduction may actually be caused by the typvelopment activity

VIl. RELATED WORK

relevant results on the technical side of the core/peripher Another alternative is testing the same hypotheses tested
dichotomy: core and periphery do not only behave diffegentin this study on each project individually. This may provide

[21], [22] and contribute different amounts of effort [3R]] us with stronger results for specific projects, and for other
but they also provide code of different complexity. projects their data may not support the hypotheses at all.

The data obtained supports both our hypothesis: the cdfethat is the case, doing a richer characterization of the
developers are able to make changes to the source code withojects would support us on identifying other factors that
introducing as much structural complexity as the peripheranable or prevent the results achieved in this study. We can
developers; and they also remove more structural complexilso investigate other factors that may impact the intrtidoc
than the other developers. Finding empirical evidencedohs of structural complexity in the source code by constructing
hypotheses highlights the importance of a healthy core teaither characterization of the changes themselves.
for a free software project: in a certain sense, the core isam Extending our dataset to include projects from other applic
responsible for keeping the project’s conceptual intgges tion domains and written in different programming langusage
suggested by Brooks [30]. will also help us generalize the results to a wider range e fr

It is important to note, however, that these results canrmsftware projects.
be taken as an incentive to not accept contributions fromThe information stored in the version control repositories
non-core developers. Not all projects are able to keep than also be explored better. There is a lot of possibilitas f
same core team during its entire lifespan [18], so receivigalysing the combination of the metadata from the version
new contributors is fundamentally important for the prégc control systenandinformation about the actual changes in the
sustainability. In several projects, non-core developams structure of the source code (as opposed to mere information
responsible for a healthy ecosystem of extensions, plugids on lines added/removed).
other types of add-ons that can be used together with the maiiit is also unclear, and worth investigating, how the devel-
product. The source code for these add-ons sometimes doper’s design ability advances as the developer advances in
not even reside in the main project repository, and sometini&e community. It would be interesting to learn how indivadiu
the changes they propose to the core product are needeslelopers evolve in terms of complexity added to the source
to enable an entire new line of possibilities for extensiodode as a developer moves from the periphery to the core, or
developers. the other way around.

Attractin_g_ as much contributors as po_ssible is impo_rtant to ACKNOWLEDGMENTS
have a thriving free software project. Project leaders mitlst . o
likely not want to send their contributors away even if thei The authors_ are thankful for the |n3|ghtfu_l contn_bu'uo_ns
contributions are not perfect. The results presented hame ({rom _Dr. Daniela Cruzes from the NorV_/eg|an University
be seen as a opportunity for project leaders to qualify th F Science and Tgchnplo@and from their colleagugs a'f
contributors: since non-core developers tend to produceem € So.ftvgar-e Engmeermg Lab (LES) at Federal Urnversny
complex code, it is perhaps a good idea to explicit reviev'nrthé)f,BahIa1L , in special Dr. 'V'a”‘??' Mend_onc;a. Antor_no Ter-
code. If code review practices are adopted, core develop&fdC IS supported by the Brazilian National Council of Re-

can work together with non-core developers looking for |e§§arc(;1 Sng D(?V?IOpgqut (CN%)PLUiZ _Ron:jari(l)z is dsup(;
complex solutions. This code review activity can even lager ported by Fundago de Amparoa Pesquisa do Estado da

documented guidelines of good design practices for theeptoj Bahia (FAPE,SBl)E' This v_vork was partially supported by the
contributors. Natlpnal _Insntute of Science and Technology for Software
The work reported in this paper is part of a larger researE19iNeerng (INESF, funded by CNPg, grant 573964/2008-4.

project, in which we investigate how developer charadiess We ar(te als% gratff_zl i? the Aa|r|1 or;ytr;:qus rewezv e:; fto r thle(;r

influence the variation of structural complexity in freetaare co;nl;nen jdan an. X tl;].'ons' 0 i elrtrgrr;arbs i ak co.ut

projects. Considering the developer’s level of partidipats no eta, fretsse tmd' IS paper will certainly be taken into

just the first step towards a more comprehensive undersstgnd'?‘ccoun In future studies.

of the phenomenon. That said, in the following paragraphs we REFERENCES

outline directions that may be taken fqr fUtur? work. _[1] D. L. Parnas, “Software aging,” iflCSE '94: Proceedings of the 16th
We plan to test other developer attributes in order to build international conference on Software engineering.os Alamitos, CA,

a more comprehensive model of how the developers influence USA: IEEE Computer Society Press, 1994, pp. 279-287.

.. L . ?5 K. Crowston and J. Howison, “The Social Structure of Feeel Open
the_Va“at'()n of Stm‘?tural_ complexity in _these_ projectacts Source Software Developmen€irst Monday vol. 10, no. 2, 2005.
attributes can be divided in two groups: i) attributes edaio [3] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two casadi¢s of open

i i source software development: Apache and MozillkCM Transactions
the. .develope_rs themselves’ Such as S.klll level, progragimin on Software Engineering and Methodology (TOSEM). 11, no. 3, pp.
ability, experience in general; ii) attributes related toe t 309-346, 2002.
participation of the developer in the project, such as Iefel b N
participation (already explored in this paper), experéeirt hitp:/iwww.idi.ntnu.no/

. - . . L3http://les.dcc.ufba.br/
the project, experience with the modules being changed, anghhttp_//www cnpa.br/
whether the developer is a specialist or not in the area @é#sh 15t /ww.fapesb.ba.gov.br/

working on (with regard to its own past activity in the prdjec http://www.ines.org.br/

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

Free Software Foundation, “The Free Software Definiti@®09, Avail-
able at http://www.gnu.org/philosophy/free-sw.htmlstleaccessed on
January 1st, 2010.

The Lua Programming Language, “Frequently Asked Quoestl' 2009,
Available at http://www.lua.org/fag.html#1.8, last assen January 5th,
2010.

T. Q@sterlie and L. Jaccheri, “A Critical Review of SoftreaEngineering [21]

Research on Open Source Software DevelopmentPrioceedings of
the 2nd AIS SIGSAND European Symposium on Systems Anaigsis a
Design W. Stanislaw, Ed. Gdansk University Press, 2007, pp. 12-20
P. Clements, F. Bachmann, L. Bass, D. Garlan, J. IversLiRle,

R. Nord, and J. StaffordDocumenting Software Architecture : Views
and Beyond ser. The SEI series in software engineering. Boston:
Addison-Wesley, 2002.

L. Bass, P. Clements, and R. Kazm&aftware Architecture in Practice
Boston, MA, USA: Addison-Wesley Longman Publishing Co.¢.In
2003.

D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tdwmay
“The Structural Complexity of Software: An ExperimentalsTe IEEE
Transactions on Software Engineerjngol. 31, no. 11, pp. 982-995,
Nov. 2005.

S. Chidamber and C. Kemerer, “A metrics Suite for Objestented
Design,” IEEE Trans. Sftware Engvol. 20, no. 8, pp. 476-493, 1994.
F. B. e Abreu, “The MOOD Metrics Set,” iProc. ECOOP Workshop
Metrics, 1995.

M. Hitz and B. Montazeri, “Measuring coupling and coloesin object-
oriented systems,” ifProceedings of the International. Symposium on
Applied Corporate Computingl995.

V. Midha, “Does Complexity Matter? The Impact of ChanigeStruc-
tural Complexity on Software Maintenance and New Develsp€on-
tributions in Open Source Software,” ICIS 2008 Proceeding2008.
K. J. Stewart, D. P. Darcy, and S. L. Daniel, “Opportiest and
Challenges Applying Functional Data Analysis to the StudyOpen
Source Software Evolution Statistical Sciengevol. 21, p. 167, 2006.
A. Terceiro and C. Chavez, “Structural Complexity Bwabn in Free

Software Projects: A Case Study,” @ACOS-OSSPL 2009: Proceedings[26]

of the Joint Workshop on Quality and Architectural Concem®pen
Source Software (QACOS) and Open Source Software and Ribites

(OSSPL) M. Ali Babar, B. Lundell, and F. van der Linden, Eds., 2009[27]

M. M. Lehman, J. F. Ramil, P. D. Wernick, and D. E. Perryétrics
and Laws of Software Evolution-The Nineties View,” Rroceedings of
the 4th International Symposium on Software Metrit897. [Online].
Available: {citeseer.ist.psu.edu/lehman97metrics.ftml

C. Jensen and W. Scacchi, “Role Migration and AdvancerReocesses
in OSSD Projects: A Comparative Case Study,” I®SE '07: Pro-
ceedings of the 29th international conference on Softwargirieering
Washington, DC, USA: IEEE Computer Society, 2007, pp. 364-3
G. Robles and J. Gonzalez-Barahona, “Contributor @ven in Libre

Software Projects,Open Source Systemgp. 273-286, 2006. [Online]. [30]

Available: {http://dx.doi.org/10.1007/0-387-34226-38}

G. Robles, J. M. Gonzalez-Barahona, and |. Herraiz,olfion of
the core team of developers in libre software projects,”"Miming
Software Repositories, 2009. MSR '09. 6th IEEE Internaiidiorking
Conference onMay 2009, pp. 167-170.

[22]

(23]

[24]

[25]

(28]

[29]

[20] J.-M. Dalle, M. d. Besten, and H. Masmoudi, “Channelirgefox

Developers: Mom and Dad Aren’t Happy,” i®pen Source Develop-
ment, Communities and Quality, IFIP 20th World Computer @ess,
Working Group 2.3 on Open Source Software, OSS 2008, Septémb
10, 2008, Milano, ItalyB. Russo, E. Damiani, S. A. Hissam, B. Lundell,
and G. Succi, Eds., vol. 275. Springer, 2008, pp. 265-271.

H. Masmoudi, M. d. Besten, C. d. Loupy, and J.-M. DalltRéeling the
Onion”; The Words and Actions that Distinguish Core from ipteery
in Bug Reports and How Core and Periphery Interact Togéther.
OSS: Diverse Communities Interacting, 5th IFIP WG 2.13rheéonal
Conference on Open Source Systems, OSS 2009, Skovden Sivede
3-6, 2009. Proceeding€. Boldyreff, K. Crowston, B. Lundell, and A. I.
Wasserman, Eds., vol. 299. Springer, 2009, pp. 284-297.

M. J. Scialdone, N. Li, R. Heckman, and K. Crowston, “GpoMainte-
nance Behaviors of Core and Peripherial Members of FreedL@pen
Source Software Teams,” iI®SS: Diverse Communities Interacting,
5th IFIP WG 2.13 International Conference on Open SourceeBys,
0SS 2009, Skovde, Sweden, June 3-6, 2009. Procee@ing®ldyreff,
K. Crowston, B. Lundell, and A. |. Wasserman, Eds., vol. 28pringer,
2009, pp. 298-309.

A. Capiluppi and M. Michlmayr, “From the Cathedral tcetBazaar: An
Empirical Study of the Lifecycle of Volunteer Community Rras,”
in Open Source Development, Adoption and Innovatidn Feller,
B. Fitzgerald, W. Scacchi, and A. Silitti, Eds. Springer,020 pp.
31-44.

E. Capra, C. Francalanci, and F. Merlo, “An Empiricau@t on the
Relationship Between Software Design Quality, Developnigfort and
Governance in Open Source Project&EE Transactions on Software
Engineering vol. 34, no. 6, pp. 765-782, Nov.-Dec. 2008.

K.-J. Stol and M. A. Babar, “Reporting Empirical Resglarin Open
Source Software: The State of Practice,"@$S: Diverse Communities
Interacting, 5th IFIP WG 2.13 International Conference oped Source
Systems, OSS 2009, Skovde, Sweden, June 3-6, 2009. hHrgseed
C. Boldyreff, K. Crowston, B. Lundell, and A. |I. WassermarusE vol.
299. Springer, 2009, pp. 156-169.

V. Basili, G. Caldiera, and D. H. Rombach, “The Goal Qias Metric
Approach,” inEncyclopedia of Software Engineeringy Marciniak, Ed.
Wiley, 1994.

R Development Core TeanRR: A Language and Environment for
Statistical Computing Vienna, Austria, 2009, ISBN 3-900051-07-0.
[Online]. Available: { http://www.R-project.org

C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnelid a
A. Wesslén Experimentation in Software Engineering: an Introduction
Kluver Academic Publishers, 2000.

D. Barbagallo, C. Francalenei, and F. Merlo, “The Intpa€ Social
Networking on Software Design Quality and Development Effio
Open Source Projects,” ifCIS 2008 Proceedings2008. [Online].
Available: {http://aisel.aisnet.org/icis2008/2p1

F. P. Brooks.Jr,The Mythical Man Month: Essays on Software Engi-
neering Addison-Wesley , April 1995, ch. “Aristocracy, Democracy
and System Design”.

